Field Crop Pest Management Meeting

Kevin H. Ganoe
Central New York Dairy & Field Crops Team
Cornell Cooperative Extension
Regional Field Crop Specialist
5657 State Route 5
Herkimer, NY 13350
Phone: 315-866-7920, ext 230
Cell: 315-219-7786
khg2@cornell.edu
Agenda

• Corn pests and issues, focus on 2013
 – Germination thru leaf diseases
• Alfalfa pests
• Giant ragweed
• Acetochlor and water quality
• I raided the slide sets for just about everything I have seen in the past 5 years plus slides and pictures online.
Germination

• Starts of enzymatic activity that results in cell division and elongation and, ultimately, embryo emergence through the seed coat.

• Corn kernels must absorb (imbibe) about 30% of their weight in water before germination begins.

• Corn will germinate and emerge slowly and unevenly when soil temperatures are less than 50°F – ideal is actually 86°F

• Repeated wetting and drying cycles can decrease seed viability.
Corn seed

- pericarp
- aleurone
- endosperm
- scutellum
- coleoptile
- plumule
- hypocotyl
- radicle
- coleorhiza
- tip cap
How Corn Seeds Mobilize Stored Starch

1. The embryo releases a hormone, which diffuses throughout the seed.
2. Aleurone cells respond to the hormone by producing the enzyme, amylase.
3. Amylase digests the starch that is in the endosperm, producing glucose.
4. As the glucose is produced, and diffuses throughout the endosperm, the scutellum imports the glucose, and transfers it to the embryo proper.
5. The cells of the root and shoot use the glucose for growth.
Kernel Appearance 12 hrs After Planting
(Equal to 10 soil-based GDD)
Kernel Appearance 36 hrs After Planting
(Equal to 34 soil-based GDD)

Radicle root visibly elongated
Seedling Appearance 36 hrs After Planting (Equal to 34 soil-based GDD)

- Plumule/coleoptile/mesocotyl complex
- Radicle root visibly elongated
Seedling Appearance 60 hrs After Planting
(Equal to 58 soil-based GDD)

Coleoptile/plumule

Radicle root
Seedling Appearance 72 hrs After Planting
(Equal to 67 soil-based GDD)

- Coleoptile/plumule
- Lateral seminal roots
Seedling Appearance 82 hrs After Planting
(Equal to 79 soil-based GDD)

- Coleoptile/plumule
- Lateral seminal roots
- Radicle root
Seedling Appearance 105 hrs After Planting
(Equal to 103 soil-based GDD)

- Coleoptile/plumule
- Mesocotyl
- Lateral seminal roots
- Radicle root
Coleoptile Prior to Emergence

The yellow leaf tissue is visible through the translucent coleoptilar tissue.

Growth Stage “VE” in Corn

1st true leaf

Coleoptile

©2007 Purdue Univ. RLNielsen
Emergence

• Elongation of the mesocotyl elevates the coleoptile towards the soil surface.

• Mesocotyls have the capability to lengthen from at least a 6-inch planting depth. Realistically, corn can be planted at least three inches deep (if necessary to reach adequate moisture) and still emerge successfully.

• The coleoptile must reach the soil surface before its internal leaves emerge from the protective tissue of the coleoptile

• Corn typically requires from 100 to 120 GDD (growing degree days) to emerge.
 – Under warm soil conditions, as little as 5 to 7 days.
 – Under cold soil conditions, emergence can easily take up to four weeks.
Rapid, uniform germination and emergence of corn

• Adequate and uniform soil moisture at the seed zone.
• Adequate and uniform soil temperature at the seed zone.
• Adequate and uniform seed-to-soil contact.
• Surface soil free from crust.
Seedling Appearance 5 Days After Planting
(Equal to 114 soil-based GDD)

1st true leaf
Coleoptile
Mesocotyl
Lateral seminal roots
Radicle root
Crown Formation

• As the coleoptile nears the soil surface, exposure to the red light wavelengths of solar radiation causes a change in the supply of one or more growth hormones from the coleoptile to the mesocotyl tissue and mesocotyl elongation comes to a stop.

• Since the depth at which the emerging seedling senses red light is fairly constant, the resulting depth of the crown (base) of the coleoptile is nearly the same (1/2 to 3/4 inch) for seeding depths of one inch or greater.

• When corn is seeded very shallow (less than about 1/2 inch), the crown of the coleoptile will naturally be closer to the soil surface if not right at the surface. Subsequent development of the nodal root system can be restricted by exposure to high temperatures and dry surface soils.
Depth of Crown Relative to the Soil Surface

- Coleoptile
- Approx. soil line
- Crown, approx. 3/4 inch below soil surface
- Mesocotyl
- Seed planted approx. 1.75 inches deep

© 2007 Purdue Univ, RL Nielsen
Imbibitional Chilling Injury

• Due to cold soil temperatures during the initial 24 to 36 hours after seeding when the kernels imbibe water and begin the germination process

• Kernels naturally swell or expand. If the cell tissues of the kernel are too cold, they become less elastic and may rupture during the swelling process

• Symptoms include swollen kernels that fail to germinate or stopping growth of the radicle root and/or coleoptile.

• Can occur during the emergence process causing stunting or death of the seminal root system, deformed elongation of the mesocotyl ("corkscrew" symptom).

• It is not clear how low soil temperatures need to be for injury
 – Some sources simply implicate temperatures less than 50F
 – Others suggest the threshold soil temperature is 41F
Deformed Mesocotyl Elongation

Early May planting;
Cold soils
Deformed Mesocotyl Elongation

Late-April planting; Cold soils

© 2004 Purdue Univ; RL Nielsen
Too much water: Things to consider
Seed to seedling stage

• Soils are saturated, there is no pore space.
• Oxygen demand by the seedling increases rapidly because of rapid cell division and elongation depends on adequate oxygen.
• The heaviest demand for oxygen is centered in the growing point. The growing point stays below ground for at least three weeks.
• Seeds with low vigor are less likely to withstand short exposures to low oxygen availability.
• Anaerobic respiration produces small amounts of energy and may keep the seedling alive for several days. Most seedlings can tolerate 3 or 4 days of flooding, but will often succumb to periods longer than 7 days.
Seed and Seedling Diseases

Symptoms:

- Disease damage may appear similar to some environmental stress, but there are general and specific symptoms can help with diagnosis.
- General effects: reduced emergence, slow growth and stunting in a random or circular pattern, wilting, chlorosis/yellowing, post-emergence damping-off.
- Specific symptoms of seed and root infections include: rotted seed and seedlings before or after emergence; red/yellow discoloration of leaves; complete or partially rotted roots with firm or soft, brown-reddish- to gray lesions or decay; discolored and soft coeleoptile; death of leaf tips; wilting; and sunken, discolored lesions on mesocotyl.
Seed and Seedling Diseases
Disease Development

• Some common fungal pathogens are the cause: Fusarium, Stenocarpella (Diplodia), Pythium, Rhizoctonia, Colletotrichum, and Penicillium.

• Which pathogens will vary and depend on location, seed quality (cracked or infected seed), soil temperatures <55°F, soil water content, soil compaction, rate of emergence and growth, hybrid/inbreds, fertilizer burn, herbicide injury, crusted soil, high temperatures (Penicillium infection), and population of flea beetles (Stewart's wilt).

• Favorable conditions are cool, wet, and compacted soil, and poor seed quality.
Pythium seedling blight
Pythium

- Disease caused by may be especially favored by the cool weather and wet soil conditions
- Moisture is especially important to Pythium because water is needed for the pathogen to produce motile zoospores, which chemically detect plant roots and swim toward them and infect. As many as 14 species of Pythium infect corn, some of which are also able to infect soybean and sorghum
- Produce specialized survival structures, called oospores, which protect them from harsh conditions. This also enables them to survive for many years, even in the absence of crop plants.
Stunted Plant Leaf Stage V2

Root System of Stunted V2 Plant

- Seminal roots
- Rotted seed fell off when seedling was dug
- Shrunken, discolored, diseased mesocotyl
- First set of nodal roots

RLNielsen, Purdue Univ., 2000

RLNielsen, Purdue Univ., 2000
Successful germination ≠ Successful emergence

- **Symptoms** include corkscrewed coleoptile, swollen mesocotyl and true leaves emerged from side of coleoptile.
- **Exposure to light** at deeper soil depths than usual due to cloddy seedbeds, dry seedbeds, sandy soils, or open slots in no-till.
- **Injury from certain herbicides**, particularly under stressful environmental conditions.
- **Surface crusting, cloddy seedbeds, rocky seedbeds, planter furrow compaction, or otherwise dense surface soil** that physically restrict mesocotyl elongation and coleoptile penetration.
- **The mesocotyl should remain firm, white and healthy** through at least the 6-leaf stage, if not longer. If it is mushy, discolored, or damaged prior to this stage, then it is likely part of the crop problem being investigated.
Deformed Mesocotyl Elongation

Early June planting; tilled wet; planted wet; compacted seed furrow
Leafing Out Underground

Mid-April planting;
Cold soils;
Surface soil crust
Uneven maturity makes a difference.

- Differences in growth stage between corn plants causes stress.
 - More mature plants are more competitive than less mature
 - A two leaf stage difference means 5-10% yield loss for the smaller plant
- Corn plants are under less stress when there is less variability.
Take Home Message on Planting Depth

- Make sure seed is at least 1.5 inches deep
- Better off shooting for 2 inches
- Make sure there is good seed to soil contact in reduced tillage or no-till situations
Black Cutworm
Black cutworm

- Black cutworm problems most often develop in corn-planted and pre-existing vegetation (i.e., weedy fields, no till plantings, etc.).
- Fields adjacent to areas of permanent vegetation are also potential trouble spots.
- The following risk factors affect the probability of a black cutworm problem developing:
 - fall plowed - problem less likely
 - late spring plowed - problem more likely
 - corn following beans - problem more likely
 - late planted - problem more likely
 - minimum tillage - problem more likely
Too much water: Things to consider

- Plants that are completely submerged are at higher risk than those that are partially submerged.
 - Plants that are only partially submerged may continue to photosynthesize, albeit at limited rates.
- The longer an area remains ponded, the higher the risk of plant death.
 - Young corn can survive up to about 4 days of outright ponding if temperatures are relatively cool (mid-60's F or cooler).
 - Fewer days if temperatures are warm (mid-70's F or warmer).
- Soil oxygen is depleted within about 48 hours of soil saturation. Without oxygen, nutrient and water uptake is impaired and root growth is inhibited (Wiebold, 2013).
- Corn younger than about V6 (six fully exposed leaf collars) is more susceptible to ponding damage than is corn older than V6.
Too much water: Things to consider

- Extended periods of saturated soils AFTER the surface water subsides will take their toll on the overall vigor of the crop.
- Some root death will occur and new root growth will be stunted until the soil dries to acceptable moisture contents.
- Plants may be subject to greater injury during a subsequently dry summer due to their restricted root systems.
- Nutrients like nitrogen are rapidly remobilized from lower leaves to upper, newer leaves; resulting in a rapid development of orange or yellow lower leaves.
- Because root function in saturated soils deteriorates, less photosynthate is utilized by the root system and more accumulates in the upper plant parts. The higher concentration of photosynthate in the stems and leaves often results in dramatic purpling of those above-ground plant parts (Nielsen, 2012).

Effects of Flooding or Ponding on Young Corn
R.L. (Bob) Nielsen, Agronomy Dept., Purdue Univ., West Lafayette, IN 47907-2054
Email address: mielsen at purdue.edu
Leaf discoloration & eventual death due to root stress from saturated soils
Common smut of corn (Syn. boil smut, blister smut)
Crazy Top of Corn
Corn Rootworm Control

- Rotate crops

- Control options
 - Use corn rootworm resistant varieties
 - Use soil insecticides

- Seed treatment of Poncho and Cruiser are ineffective
 - Seed treatment of Poncho and Cruiser 1250 are only slightly more effective than 250
Corn Rootworm Control
Preventing Resistance to Resistance

• Use a different Bt corn hybrid, preferably with multiple Cry proteins in a corn field
• Practice crop rotation and avoid planting continuous corn
• Control any volunteer corn
• Use a soil insecticide at planting to ensure control of larvae and prevent corn lodging
• Monitor the efficacy of control

Western Corn Rootworm Bt Resistance Now Includes mCry3A Toxin
December 19, 2013 By: Rhonda Brooks, Farm Journal Seeds & Production Editor
Gray Leaf Spot

- can be most severe in fields of continuous no-till corn where air drainage is poor
- Enough inoculum in the air to see in fields that are not in no-till or high residue
- Fields along streams and rivers are particularly vulnerable because of the extended periods of dew and high humidity
Gray leaf spot: Symptoms

• Symptoms are gray, rectangular lesions that are restricted by the leaf veins

• An individual lesion resembles a paper match

• This disease produces a toxin that requires sunlight; therefore the disease usually begins on the field edges and moves in.
Resistant hybrids (left), gray leaf spot lesions may be smaller with jagged margins. On more susceptible hybrids (right), gray leaf spot lesions are long and rectangular.
Gray leaf spot: Disease cycle

- Cercospora zeae-maydis can survive only on infested corn debris
- Infested corn debris on the soil surface is the source of primary inoculum for the next corn crop. Typically leaf sheaths.
- These airborne spores are the means by which the fungus infects the new corn crop.
Gray leaf spot:
Disease cycle

- Disease needs high humidity and free moisture
- Lower leaves first, why weed control can be a factor
- If dryness occurs in season infection goes “dormant”
- Plants more susceptible after tasseling
Gray leaf spot
Control

• Crop rotation
 – At least 1 year
• Resistant Hybrids
 – No immunity
 – Cure can be worse than the disease
• Increase tillage to reduce corn residue
 – Must bury debris
• Fungicides-Scout for presence of the disease as you approach tasseling
Estimated corn yield loss based on percentage of infected leaf tissue.

<table>
<thead>
<tr>
<th>Percentage Ear Leaf Area affected by early dent stage (r5)</th>
<th>Approximate Yield Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% or less</td>
<td>0-2%</td>
</tr>
<tr>
<td>6-25%</td>
<td>2-10%</td>
</tr>
<tr>
<td>25-75%</td>
<td>5-20%</td>
</tr>
<tr>
<td>75-100% (leaf death)</td>
<td>15-50%</td>
</tr>
</tbody>
</table>

Northern Corn Leaf Blight (NCLB)

• In 2013 seemed to be everywhere
• Doesn’t seem to come from the same field
• Fields along streams and rivers are particularly vulnerable because of the extended periods of dew and high humidity
Northern Corn Leaf Blight (NCLB)

Symptoms

• NCLB is recognized by long, elliptical lesions typically cigar-shaped
• Lesions may be as large as 3/4 inch in width and 2 inches in length
• Lesions produce olive-green or black fungal spores when humidity is high, which can give the lesions a dark or dirty appearance
NCLB: Disease cycle

• Northern corn leaf blight (NCLB), caused by the fungus Exserohilum turcicum
• Infested corn debris on the soil surface is the source of primary inoculum for the next corn crop
• These airborne spores are the means by which the fungus infects the new corn crop.
NCLB: Disease cycle

- Disease needs high humidity and free moisture
- If lesions have reached the ear leaf or higher during the two weeks before and after tasseling, yield loss could occur.
- Hybrid corn yield could be reduced as much as 30 percent if lesions are present prior to or at tasseling.
- Scout fields for the disease at or prior to tasseling.
NCLB: Control

- Resistant hybrids
- Crop rotation and reducing tillage may help less so than Grey Leaf Spot
- Fungicides – Scout for presence of the disease at or near tasseling
When to apply a fungicide

Consider a fungicide application if:
The hybrid is rated as susceptible or moderately susceptible
 AND
50 percent of the plants in a field have disease lesions present on the third leaf below the ear leaf or higher prior to tasseling
 OR
Consider a fungicide application if:
The hybrid is rated as moderately resistant
 AND
50 percent of the plants in a field have disease lesions present on the third leaf below the ear leaf or higher prior to tasseling
 AND
Additional factors or conditions that favor disease development are present (residue present, favorable weather conditions)
<table>
<thead>
<tr>
<th>Class</th>
<th>Active ingredient (%)</th>
<th>Product/Trade name</th>
<th>Rate/A (fl oz)</th>
<th>Gray Leaf Spot</th>
<th>Northern Corn Leaf Blight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strobilurin Group 11</td>
<td>azoxystrobin 22.9%</td>
<td>Quadris 2.08 SC</td>
<td>6.0-15.5</td>
<td>E</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>pyraclostrobin 23.6%</td>
<td>Headline 2.09 EC/2.08 SC</td>
<td>6.0-12.0</td>
<td>E</td>
<td>VG</td>
</tr>
<tr>
<td>Triazole Group 3</td>
<td>propiconazole 41.8%</td>
<td>Tilt 3.6 EC, PropiMax 3.6 EC, Fitness 3.6 EC</td>
<td>2.0-4.0</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Mixed mode of action</td>
<td>azoxystrobin 7.0%</td>
<td>Avaris 200 SC</td>
<td>7.0-14.0</td>
<td>E</td>
<td>VG</td>
</tr>
<tr>
<td></td>
<td>propiconazole 11.7%</td>
<td>Quilt 200 SC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>azoxystrobin 13.5%</td>
<td>Quilt Xcel 2.2 SE</td>
<td>10.5-14.0</td>
<td>E</td>
<td>VG</td>
</tr>
<tr>
<td></td>
<td>propiconazole 11.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pyraclostrobin 13.6%</td>
<td>Headline AMP 1.68 SC</td>
<td>10.0-14.4</td>
<td>E</td>
<td>VG</td>
</tr>
<tr>
<td></td>
<td>metconazole 5.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trifloxystrobin 32.3%</td>
<td>Stratego YLD 4.18 SC</td>
<td>4.0-5.0</td>
<td>E</td>
<td>VG</td>
</tr>
<tr>
<td></td>
<td>prothioconazole 10.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is up with this alfalfa?

June 5, 2013
Spittle Bug
Alfalfa Weevil
Growing degree days-GDD

- Alfalfa growth is based on 41°F
- Alfalfa Weevil growth is based on 48°F
- Degree Day = (Max temp + Min temp) – Base temp
- Total the daily degree days after March 1 to get the accumulated GDD
- Examples:
 - Day 1 \((36+34)/2-48= 0\) Degree Days
 - Day 2 \((59+41)/2-48= 2\)
 - Day 3 \((70+55)/2-48= 14.5\)
 - Accumulated GDD 16.5
Growing Degree Days for Peak (50%) Occurrence of Stage - 48°F base

<table>
<thead>
<tr>
<th>Stage or Event</th>
<th>Degree Days*</th>
</tr>
</thead>
<tbody>
<tr>
<td>eggs hatch</td>
<td>280</td>
</tr>
<tr>
<td>instar 1</td>
<td>315</td>
</tr>
<tr>
<td>instar 2</td>
<td>395</td>
</tr>
<tr>
<td>instar 3</td>
<td>470</td>
</tr>
<tr>
<td>instar 4</td>
<td>550</td>
</tr>
<tr>
<td>cocooning</td>
<td>600</td>
</tr>
<tr>
<td>pupa</td>
<td>725</td>
</tr>
<tr>
<td>adult emergence</td>
<td>815</td>
</tr>
</tbody>
</table>

* 48°F base temperature. Source: R. I. Carruthers
Potato Leafhoppers

- Adults live for 4-7 weeks
- Females deposit 2-3 eggs per day in plant stems

- Pale, green nymphs emerge in 7-10 days
- The fastest development occurs at 86 degrees F.
- They go through five instars in about 2 weeks
- At least two overlapping generations occur in Iowa every year.
White Clover

- Stolon growth
 Stem flat on ground
- Shallow rooted
- Grows best:
 - With little competition
 - Moist soils
- Maybe growing where other plants aren’t
Giant Ragweed
Giant Ragweed Advantage

• Early emergence
• Emergence through growing season
• Rapid growth rate due to large leaf area allows it to compete with crops and other weeds
• Will grow above other plants
How much competition?

• Research that examined giant ragweed competition in corn demonstrated that season long competition from just 2 giant ragweed plants per 110 square feet can reduce corn yield by 13%.

• Giant ragweed is even more competitive in soybeans than in corn
 – Just 1 plant per 110 square feet reduced yields by 50%
 – When giant ragweed plants emerge with the crop and interfere with soybeans for at least 4 weeks, yields can be reduced more than 25% if weather conditions are unfavorable for crop development.
Giant Ragweed
Issues Affecting Control

• Crop Rotation and Tillage
 – More where minimum tillage
 – Less with notill and conv
• Stem-Boring Insects and Control with Glyphosate
• Herbicide Resistance
 – ALS inhibitors such as Classic® and FirstRate®
Giant Ragweed Control

- Need to control early flush with clean tillage or burndown
- Burndown options
 - Atrazine with dicamba, 2,4-D ester or glyphosate
 - Glyphosate with dicamba or 2,4-D ester
 - Lumax or Lexar
Giant Ragweed Control

• Preemergence should be atrazine containing with Hornet or Lumax/Lexar

• Most postemergence herbicides work, may be best in tandem or herbicides with multiple active ingredients

• Total post
 – Needs to be early
 – Need residual
Weed Science Society of America
Herbicide Group 15

<table>
<thead>
<tr>
<th>Seedling growth inhibitors (shoot)</th>
<th>chloroacetamides</th>
</tr>
</thead>
<tbody>
<tr>
<td>alachlor</td>
<td>Intrro</td>
</tr>
<tr>
<td>acetochlor</td>
<td>Harness/Surpass, Breakfree, Degree, Warrant</td>
</tr>
<tr>
<td>dimethenamid</td>
<td>Outlook</td>
</tr>
<tr>
<td>metolachlor</td>
<td>Dual, Cinch</td>
</tr>
</tbody>
</table>
Table 3.7.1. Effectiveness of selected corn herbicides on annual weeds.

Broadleaf Annual Weeds

<table>
<thead>
<tr>
<th>Preemergence Herbicides</th>
<th>Wild Buck wheat</th>
<th>Common Lambsquarters</th>
<th>Wild Mustard</th>
<th>Redroot Pigweed</th>
<th>Common Ragweed</th>
<th>Velvet leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>†Dual II Magnum/†Cinch</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>None</td>
</tr>
<tr>
<td>†Harness/†Surpass</td>
<td>Poor</td>
<td>Fair</td>
<td>Poor</td>
<td>Excel</td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>*†Intrro (Micro-Tech?)</td>
<td>Poor</td>
<td>Fair</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
<td>None</td>
</tr>
<tr>
<td>*†Outlook</td>
<td>Poor</td>
<td>Poor</td>
<td>None</td>
<td>Good</td>
<td>Poor</td>
<td>None</td>
</tr>
</tbody>
</table>

1. Effectiveness ratings for *atrazine and Princep are not accurate for triazine-resistant lambsquarters, pigweed, and ragweed.

2. Restricted-use pesticide; may be purchased and used only by certified applicators or used by someone under the direct supervision of a certified applicator.

3. Not for use in Nassau and Suffolk Counties; pesticide labels that indicate “Not for use on Long Island, N.Y.” mean that use is prohibited in Nassau and Suffolk Counties only.
Table 2.2-8. Relative effectiveness of corn herbicides on grasses, grasslike species, and broadleaf weeds.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Lambs quarters</th>
<th>TR Lambs quarters</th>
<th>Eastern Black Night shade</th>
<th>Pig weed</th>
<th>TR Pigweed</th>
<th>Common Ragweed</th>
<th>Smart weed</th>
<th>Velvetleaf</th>
<th>Corn Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual, Cinch</td>
<td>6</td>
<td>6</td>
<td>7+</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>N</td>
<td>N</td>
<td>Fair-Good</td>
</tr>
<tr>
<td>Harness, Degree, Surpass, Topnotch</td>
<td>7</td>
<td>7</td>
<td>8+</td>
<td>9</td>
<td>9</td>
<td>7+</td>
<td>7</td>
<td>6</td>
<td>Good</td>
</tr>
</tbody>
</table>

Penn State Agronomy Guide