Harvesting Winter Triticale Silage

By: Bill Verbeten

While the harvest of winter triticale silage is still a month away for most farms it’s important to review what it takes to make high quality silage from this crop. Hopefully enough nitrogen fertilizer was put on at green-up (see Feb 2013 Ag Focus article) to ensure high yields of 3-4 tons of DM per acre. Harvesting at the flag leaf growth stage, wide swathing, tedding, ensiling the same day as cutting, and applying a homolactic bacterial inoculant will enable NWNY farmers to put up winter triticale silage (and other small grain silages) that rivals haylage in forage quality.

Field Operations
Winter triticale harvest should happen about a week before the first haylage harvest since winter small grains start spring growth sooner than alfalfa and grasses. There will be about a 5-to-10 day window to harvest winter triticale once it reaches the flag leaf growth stage, Feeks Stage 9 (Figure 1). The seed head will still be in the stem, somewhere between half and three-quarters of the way up the stem. Once the seed heads are visible at the top of the stem the triticale has reach boot stage, Feeks Stage 10 (Figure 1), and forage quality will start to rapidly decline. Winter triticale will still make a great feed for heifers and dry cows and will continue to increase in tonnage up to the late boot stage if rain delays the harvest on some fields. Cutting the triticale low (1 inch or less) at these growth stages usually prevents any regrowth.

Laying the triticale in as wide of a swath as possible when cutting will increase the drying speed for the first 3-4 hours (Figure 2).

Focus Points

<table>
<thead>
<tr>
<th>Focus Points</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Do I Find Alternative Water on My Farm?</td>
<td>5</td>
</tr>
<tr>
<td>Implementing Biosecurity on Dairy Farms</td>
<td>6-7</td>
</tr>
<tr>
<td>Early Season Nitrogen Fertilizer Application for Pastures</td>
<td>8-9</td>
</tr>
<tr>
<td>The Bob Veal Calf Concern</td>
<td>10</td>
</tr>
<tr>
<td>New Traceability & ID Regs</td>
<td>11</td>
</tr>
<tr>
<td>Now in Effect</td>
<td></td>
</tr>
<tr>
<td>Ask Extension...</td>
<td>13</td>
</tr>
<tr>
<td>I am finding large worms crawling on top of the snow. Are these armyworms?</td>
<td></td>
</tr>
<tr>
<td>Agricultural</td>
<td>14</td>
</tr>
<tr>
<td>Regional Meetings & Programs</td>
<td>Back</td>
</tr>
<tr>
<td>Cover</td>
<td></td>
</tr>
</tbody>
</table>
Mission Statement

The NWNY Dairy, Livestock & Field Crops team will provide lifelong education to the people of the agricultural community to assist them in achieving their goals. Through education programs & opportunities, the NWNY Team seeks to build producers’ capacities to:

- Enhance the profitability of their business
- Practice environmental stewardship
- Enhance employee & family well-being in a safe work environment
- Provide safe, healthful agricultural products
- Provide leadership for enhancing relationships between agricultural sector, neighbors & the general public.
The swaths should then be tedded after this initial drying time to expose the bottom and inside of the swaths to the sun and wind since only the outer ¾ inch of swath dries quickly. It is very important to SLOW down when tedding. Some farmers have learned this the hard way by literally tearing their tedders apart in the field by trying to move the 10-12 tons per acre of wet triticale silage too quickly. An even layer without large clumps should be present across the field after tedding. Conditioning small grain silage has not helped increase drying time in NY. The breaking of alfalfa stems generally helps hay crops dry quicker in the second or third day of drying.

Ensiling

Winter triticale silage should be put in the bag or bunker the same day as harvest if possible. Laying a wide swath and tedding will greatly reduce the silage moisture, especially on sunny and windy days. Even with lower dry matter silages (~30% DM), same-day ensiling has generally reduced the occurrence of butyric (black/slimy) layers in the silage. Initial research has shown that as the temperatures fall overnight, respiration (micro-organisms breaking down the silage into CO₂) increases and leads to more spoilage. Inoculating with a homolactic bacteria can also help improve fermentation and decrease spoilage. Area farmers have had success using a number of different products for inoculation of winter triticale silage.

Contact Bill Verbeten at 585-313-4457 or wdv6@cornell.edu if you have further questions.
Commitment to Quality & Service

at Reisdorf Bros. Inc
Since 1912, providing you quality feed and independent service for Western NY Farmers.

Full Line of Complete Feeds at Competitive Prices
“Exclusive” Extruded Full Fat Soybeans
“Steamed Rolled” Flaked Corn
Customized Feeds and Complete Nutritional Feed Programs
Dairy Production Consultant
Full Line of Liquid Feed Supplements
Custom Spraying and Crop Service
Exclusive Manufacturer of “Country Magic Dog and Cat Food”
Working Relationships with Your Vet and Consultants for “YOUR Bottom Line;”
Plus Access to the Latest Technology in the Feed Nutrition Business

REISDORF
BROTHERS, INC.

Your Complete Farm Store & Feed Mill
1830 Perry Rd, North Java, NY 14113
Toll Free: 1.800.447.3717 585.535.7568 Fax: 585.535.0470

Please visit our website:
www.reisdorfbros.com
"Water, water everywhere, And all the boards did shrink.
Water, water everywhere, Nor any drop to drink."1

Does that remind you of last summer? Did you run out? The NWNY region is rich with water; the obstacle is getting it to where you need it. New York is home to 0.3% of the world’s population with 2.0% of the world’s surface water with roughly 8,000 freshwater lakes! Climate trends are pointing to longer growing seasons, so crops will need additional water. There will also be an increasing number of heavy rainfall events, and wetter spring seasons. The water will be there, but management may need to be adjusted to meet the farm’s needs.

Over the winter I had questions and comments about farms’ water supplies for grazing. Some farm wells went dry so alternative sources needed to be developed. Here is a brief overview of some options. If you think of others, let me know!

First, think of conservation. Fix leaks, reduce spills, make sure water troughs are level. Keep livestock cool with shade, or bring them back to the barn during the mid-day heat. Utilize pastures early, late and overnight. Have plenty of water available at the barn so they get their fill before heading out to pasture.

You will need to estimate the amount of water needed by your animals. When temperatures are cool, pastures are lush, water consumption will be lower. As the temperatures climb and plants dry out consumption increases. Don’t let water be your limiting factor to production! Quality is critical; some water in our area is very hard and can disrupt intake and metabolism. And, regardless of source, the water still needs to get to the animals. Ideally, an alternative source can be connected to your existing water lines.

A quick fix would be a water wagon. If your current source is low, water can be hauled from a municipal well or other source. It can be hauled to a remote pasture that is used only occasionally. Hauling is time-consuming.

I have talked with a couple of farms that are planning to install ponds as a water source. They can be collection basins for springs or rainfall. Placement and sizing is important, as well as soils and subsoils. Depending on the topography of your farm, proper placement would allow gravity flow to stock tanks. A small solar-powered or gas-powered pump can get the water to where it needs to go. Water could be pumped to a storage tank then gravity-fed.

Is there a spring on the farm that could be developed? This is another option. A spring can form when a fracture occurs in an impervious rock layer. Water will seep out of the aquifer, through the crack and reach the ground until the aquifer level drops below the ground outlet. Springs can be collected into a pond or catch area then pumped to where water is needed.

If you are fortunate enough to have a stream on the farm, maybe that is a source. Some waterways can have seasonal flow so use may be limited. Remember to limit livestock access or pump from the stream to prevent erosion and contamination problems.

Maybe it is time to drill a new well. Again, placement is critical; it may be worthwhile drilling in a remote location or at the farmstead. A power source is needed to pump the water.

Contact the experts for assistance! Your county Soil & Water Conservation District or Natural Resources Conservation Service can help! Well drillers or dowsers can assist with placement.

As weather patterns shift and our climate changes, maybe the future will point to pasture irrigation.

1Rime of the Ancient Mariner, by Samuel Taylor Coleridge.
On dairy farms biosecurity can be a touchy subject. This is likely because the high demands of farm life can make biosecurity difficult to implement. Moreover, biosecurity can be somewhat intangible because it is often referred to in the context of a catastrophic event such as an outbreak of foot and mouth disease (FMD). However, New York State is currently experiencing an increased incidence in *Salmonella Dublin*. *Salmonella Dublin* is a bacteria that generally manifests itself as respiratory disease in calves and can cause permanent lung damage. In addition, *Salmonella Dublin* is a zoonotic disease which means that it can spread from cows to humans. This recent outbreak should act as a reminder of the importance of implementing biosecurity principles into our daily practices.

To practically incorporate biosecurity on dairy farms, it’s important to understand how diseases spread. Many diseases spread through the fecal-oral route, or in other words when cows ingest manure. As a result employees should avoid walking in animal feed if their boots are contaminated with manure. Similarly, equipment should be designated to handle only feed or only manure. In addition, calves are the most vulnerable animals on the farm; therefore, implementing a boot wash before entering any calving facilities or calf barns can be a practical solution. Being conscious of this route of infection should be the first step in implementing biosecurity.

Taking this a step further, many biosecurity plans involve the RITS principle. RITS is an acronym for Resistance/Recognition, Isolation, Traffic Control, and Sanitation. Resistance involves implementing a proper vaccination program. This should be developed with help from your herd veterinarian. Along with resistance it’s important to realize that cows are constantly being bombarded with pathogens. Usually the cow’s immune systems can keep these pathogens in check; however you can tip the balance in favor of the pathogens if animals are exposed to a high pathogen load or if animals are under stress. Stress factors such as overcrowding, heat stress, or facilities lacking in cow comfort can suppress the immune response, allowing pathogens to proliferate and cause disease. This can be a vicious cycle because once animals actively show disease symptoms they are usually simultaneously shedding the disease into the environment, increasing pathogen load and perpetuating the cycle. It’s also important to quickly recognize an outbreak, meaning if multiple animals are showing signs of disease action should be taken to minimize the spread of disease. Often this requires advice from your herd veterinarian and leads me to the “I” in RITS or isolating infected animals. If you are not maintaining a “closed” herd, purchased animals should come with vaccination records and test negative for Johnes, Leukosis, and *Salmonella Dublin*. New arrivals should be placed in isolation for at least two weeks to prevent any new disease from being introduced to the herd.
This can be difficult to implement but recognize that new arrivals are generally under a lot of stress from transportation and experiencing a new environment. Therefore, should they be a carrier animal they will likely begin actively shedding a disease into the environment. If they are a healthy animal they will likely be more susceptible to new infections because their immune system is suppressed. The “T” involves traffic control. Employees should move from the youngest animals to older animals, working from healthy animals to sick animals. This movement pattern reduces the pathogen load for healthy animals. Traffic control also includes visitors to the farm. Visitors should have a clear parking area that directs them to an employee or a manager who can facilitate their movement around your facility. Worst case scenario is when visitors can access any part of your operation, petting lactating cows and then visiting the calf barn to have the baby calves suck on their hands. This poses a threat to the health of your calves and a threat to the health of the visitor because calves can carry several zoonotic diseases, including cryptosporidium. Finally, this leads me to the “S” or sanitation. People who care for sick animals should change clothes before working with healthy animals or calves. They should also be provided with a hand washing station or hand sanitizer. This provides protection to both other animals and to your employees.

The recently held Calf Management Module, as part of the Dairy Skills Training collaboration between The Wyoming County Dairy Institute (WCDI) and the Northwest New York Dairy, Livestock and Field Crops Team (NWNY Team), partnered with Alfred State College for the on-farm portion of the module.

Participants in the program had to apply calf halters, basic calf restraints, do physical exams, and perform blood draws. They had demonstrations on humane dehorning techniques, applying ear tags, evaluating colostrum, administrating esophageal feeders, nipple types, use of an anemometer and a calf necropsy performed by Jerry Bertoldo DVM, senior extension assoc. of the NWNY Team. Additionally, all participants were treated to a lunch at the College cafeteria.

Evaluations of the module were excellent with two of the participants taking the module for college credit. In addition to the 10 hours of lecture and 6 hours of hands-on activities, participants taking the module for college credit must complete additional work to complete course requirements. In this particular module they are required to complete written protocols on calving and what is mandated to take the calf to approximately 60 days of age. The project has to include but is not limited to; record keeping, nutrition, employee accountability, health and treatment regimes, weight gains, dehorning practices, blanketing, IgG testing and evaluation, and colostrum evaluation and storage. All of the aforementioned topics were discussed during the lectures or hands-on activities during the module.
Early Season Nitrogen Fertilizer Application for Pastures: Expected Changes in Profit for a Grazing Dairy Farm Utilizing Pasture Sourced Feed, and Supplemental Feeding in the form of a Purchased TMR

By: John J. Hanchar

Summary

Mid April nitrogen fertilizer applications can be expected to increase the amount of forage available to pastured dairy cows during the early part of the grazing season – for example, through early June.

Expected increases in profit associated with additional early season nitrogen fertilizer applications are dependent upon the extent to which the producer can convert increased forage availability attributed to early nitrogen fertilizer application into reduced total mixed ration (TMR) purchased.

Expected changes in profit are sensitive to the expected reduction in TMR purchased, expected TMR price, expected nitrogen needed, and expected price of nitrogen, suggesting that producers develop analyses specific to the farm business.

A Question for Analysis

The following question resulted from producer interest in identifying the optimal mix of stored and pasture sourced feeds. Stored feeds include those grown and/or purchased, including, for example, a purchased TMR.

Does it make sense to produce additional forage to be grazed in pastures early in the grazing season via an early season application of nitrogen fertilizer given milk production goals, and given that feed needs are to be met using the optimal mix of pasture sourced feed and purchased TMR?

Partial Budgeting

One measure that producers use to evaluate possible changes in practices is the expected change in profit. Profit equals the total value of production minus the costs of inputs used in production. Expected change in profit equals the expected change in total value of production minus the expected change in costs. Analysts construct a partial budget to estimate the expected change in profit associated with a proposed change in the farm business, for example, early season application of nitrogen fertilizer to pastures.

Selected Assumptions

Number of cows – constant for proposed and current: 65
Acres of pasture for May and early June – constant for proposed and current: 90
Number of days grazed for analysis – constant for proposed and current: 35
Production target (lbs. of milk per cow per day) – constant for proposed and current: 50 to 60
Fall freshening – constant for proposed and current
Average future year, before tax, marginal analysis
Initial expected reduction in purchased TMR (lbs. as fed per animal per day): 20
Initial Purchased TMR costs ($ per lb. as fed): 0.09
Initial additional pounds of nitrogen applied per acre in mid April: 50
Initial price per pound of nitrogen ($): 0.81
Machinery operating costs, and labor cost for nitrogen application ($ per acre): 7

Results

Table 1. Expected Change in Profit Associated with a Proposed Change in the Farm Business - Proposed: Mid April Nitrogen Fertilizer Application on Pastures Vs. Current: No Mid April Nitrogen Fertilizer Application on Pastures.
Analysts acknowledge that they are more comfortable with some assumptions than others with respect to values and their uncertainty. Analysts employ sensitivity analysis to evaluate possible impacts of different assumptions on results (Please see Tables 2 and 3).

Table 2. Expected Change in Profit by Expected Reduction in TMR Purchased by Expected Nitrogen Application Needed.

<table>
<thead>
<tr>
<th>Expected Reduction in TMR Purchased (lbs./cow/day)</th>
<th>50</th>
<th>75</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>-1,204</td>
<td>-3,026</td>
<td>-4849</td>
</tr>
<tr>
<td>20</td>
<td>-180</td>
<td>-2,003</td>
<td>-3,825</td>
</tr>
<tr>
<td>25</td>
<td>844</td>
<td>-979</td>
<td>-2,801</td>
</tr>
<tr>
<td>30</td>
<td>1,868</td>
<td>45</td>
<td>-1,778</td>
</tr>
</tbody>
</table>

Table 3. Expected Change in Profit by Expected TMR Price by Expected Nitrogen Price.

<table>
<thead>
<tr>
<th>Expected TMR Price ($/lb. as fed)</th>
<th>Expected Nitrogen Price ($/lb. of N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>0.11</td>
<td>--- dollars --</td>
</tr>
<tr>
<td>0.09</td>
<td>1,540</td>
</tr>
<tr>
<td>0.07</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td>-280</td>
</tr>
<tr>
<td></td>
<td>-1,090</td>
</tr>
<tr>
<td></td>
<td>-1,945</td>
</tr>
</tbody>
</table>

To place the results in Tables 1 through 3 in context, consider that net farm income without appreciation per cow, a measure of profit, was $648 and $696 for the same 24 intensive grazing dairy farms in 2010 and 2011, respectively (2012. DFBS: Intensive Grazing Farms New York 2011.). Recall that the analyses above assumed a herd size of 65 cows.

If you are interested in learning more about this topic, including developing analysis for your farm business, then please contact John Hanchar, jih6@cornell.edu, 585 233 9249.

Note: Results reflect initial assumptions.
By: Jerry Bertoldo

Bull calves in the dairy business are most often a topic that producers would rather not think about. The financial returns from selling them are usually low. There are unavoidable labor costs in their care. The sooner they leave the farm the better is the usual mantra. Too many of these critters become bob veal - early slaughtered calves with minimal economic value. Farmers are reluctant to put more time and effort into insuring a strong and healthy calf that has a good chance of entering a veal raising operation. This means holding on to these calves for some extra days risking the chance of scours or worse yet death. Veal managers do not want light, less vigorous and very young bull calves for fear of high loss rates as well. Experience tells them that larger and more active calves will do better and result in lower mortality rates and better feed conversion.

There has been another issue creeping onto the scene, that of antibiotic residues in bob veal. Few people are bold enough to think that treating a young calf directly with injectable antibiotics will not result in detectable tissue levels if that animal enters the food chain within a few days. The problem is generally not from injectable products, but from oral scour medications, medicated milk replacers and more rarely colostrum containing antibiotics. Neomycin has been the most common culprit.

Neomycin and tetracycline have both been included in some scour medications and milk replacers for many years. Labeling of these scour treatments can be misleading as to withdrawal times. Medicated milk replacers do not contain treatment levels of these antibiotics, but are formulated for use in heifer calves not calves destined for bob veal. Colostrum from cows treated with oil based dry treatments is most likely to carry residues of significance to the newborn calf. Dry treating less than the labeled days pre-calving, double tubing or treating a slack quarter can result in higher than expected first milking antibiotic levels.

Holding out milk on fresh cows according to the labeled recommendations on dry treatment and not feeding it to bull calves is an extra measure of safety. The vast majority of colostrum will not cause an issue, however. Feeding heifer colostrum to bull calves is a failsafe way of preventing colostrum based problems provided that the practice of dry treating springers is not in place.

“Repurposed materials” are by products and waste that have value “as is” to a second, unrelated industry. In the dairy, we think of tires on bunks, half of a large tire on a skid loader as an alley scraper, cut plastic drums as waterers or salt tubs, advertising billboard covers used as tarps, conveyor belting as flooring surfaces and even old street sweeper brushes as cattle back scratchers. Go to www.repurposedmaterialsinc.com for more interesting and economical reuse ideas!
The new federal Animal Disease Traceability Rule went into effect on March 11, 2013. The intent is to improve our ability to trace livestock and poultry when there is a disease event. In 2006, the USDA initiated the National Animal Identification System (NAIS). This voluntary program asked producers to register their premises and identify their animals with a national animal tracking database. After seeing low enrollment in NAIS, the Department launched a series of efforts in 2009 to assess the issues and concerns which were preventing widespread acceptance of NAIS in the livestock community. Producers raised several serious concerns about the protection of proprietary information through premises registration and the program’s overall lack of flexibility. As a result, NAIS was never fully implemented and eventually discontinued. The new animal disease traceability framework seeks a new and different approach.

The new rule only applies to cattle that move interstate. The USDA and individual states will start with education and phase in the compliance portion.

The rule will require all cattle to have Interstate Certificates of Veterinary Inspection (ICVI) except those moving directly to slaughter or through a market and then to slaughter. The federal rule does allow exceptions where the sending and receiving states have an agreement to use documentation other than the ICVI. New York is working with the New England States and has reached out to Pennsylvania and Ohio to put into place agreements to allow the movement of bovine calves between those states without an ICVI. This would avoid stressful delays in holding these calves waiting for the paperwork to be processed.

In addition, the scope of “official” identification has been expanded from the original proposed rule to include brands, tattoos and brand registration and not just EID and metal ear tags. The consent of the shipping and receiving states is necessary, however. The use of back tags as an alternative to ear tags for cattle and bison moved directly to slaughter has been permanently maintained.

It is expected that details of this new rule will change as agreements between states are reached. Check with your veterinarian or with the NYS Division of Animal Industries state veterinarian in your area for more information.
I am finding large worms crawling on top of the snow. Are these armyworms?

By: Mike Stanyard

The last week of February I received multiple calls about worms crawling on top of the snow. Most of the calls came from Yates and Seneca counties but I’m sure this strange event occurred in other areas across the region. Many were concerned that they were armyworms overwintering from the “2012 Armyworm Invasion”. This goes to show how bad the armyworms were this past year and the damage they caused has not been forgotten. Many callers reported that seagulls were feeding on the caterpillars and were the first indication that something was out on the snow.

Were these armyworms? No. Armyworms do not overwinter here in NY. It is too cold for this species to survive. New adult moths migrate from the south every year to lay eggs and repopulate the northeast. These caterpillars looked and acted very similar to armyworms so it was a good first guess!

So what were they? These beasts were winter cutworms. Yes, there are species of cutworms that overwinter in the larval stage here in NY. We are more familiar with its close cousin the black cutworm. The black cutworm, like the armyworm, does not overwinter here in NY. The winter cutworms I have seen this year range in color from green to a dark brown. This cutworm has a series of black dashes running down the top of its back. While most of the reports have been of large worms over two inches, a few have been smaller.

Why were they on top of the snow? The warmer temperatures had them feeding on plants under the snow. The ones I had in a container overnight had lots of frass (bug poop) in the bottom. We had some rains that compacted the snow and made it very heavy. In addition, the water sat on top of the ground because the ground was frozen and had nowhere to go. Between the saturated conditions and the heavy snow, the cutworms had to escape on top of the snow.

Winter cutworms do not have the pest status that their cousins uphold. They are one of a very few cold-tolerant insects that can come out during the winter months. They do the majority of their feeding in the late fall but can stay active on warmer days throughout the winter feeding under the snow. I had other calls in January during our first thaw and reports of worms crawling across driveways and into farm buildings. This mass movement is also very reminiscent of armyworm behavior. There are definitely more winter cutworms overwintering this year than I’ve ever seen before.

Will they cause damage to agricultural crops this spring? We normally do not consider this cutworm to be of any economic importance to crops. They do feed on a wide variety of hosts. A few years ago, I had one feeding on my spider plant I had brought inside for the fall. There is a possibility that with the high numbers we are seeing this winter that some small areas of winter wheat, pastures, or hay fields could have seen localized feeding damage late last fall and over the winter. There are very few reported cases of economic damage associated with this insect. It is very unlikely that we would have to spray an insecticide to control winter cutworm larvae this spring.
Make Consistency a Priority

Standard Operating Procedures (SOPs) are important in any workplace, but especially on dairy farms. Since cows are creatures of habit, small changes in their environment and the way that they are handled can cause them a lot of stress. If a cow is stressed when she enters the parlor, she won’t let down her milk right away. Having a milker attached before she has let down causes damage to teat ends, which can lead to mastitis. Not getting milked out can lead to the same. Creating and enforcing SOPs in all areas of the farm, especially where more than one person is doing a specific job, is one way to ensure that cows are being cared for properly, even when the boss isn’t present.

Arguably one of the more important SOPs on a dairy farm is the milking routine. Does your farm have an established milking routine? Do all your milkers follow it consistently? When you hire new employees, who is in charge of training them? If the answer is their coworkers, then you should be on the lookout for protocol drift. Little changes in procedure can add up over time. Let’s say part of your milking protocol is to strip four squirts of milk from each teat. If no one is checking in on the milkers, or they aren’t taught why four squirts is important, these employees might let that slide to only three squirts over time. The next new employees you hire will most likely be trained to strip three squirts by your current employees. If this trend continues unchecked over time, you might walk into the parlor one day and find all your employees dipping, wiping and attaching without forestripping at all, and sincerely believing that they are doing what is expected of them.

One way to keep your routine consistent is to create visual reminders for yourself and for your employees. The first step is to write down the steps to complete the job. If you’ve never done this before, it might take a couple of drafts before you’re able to capture all the important points. Add pictures to make it more explicit. Then test out your SOP, preferably on someone who doesn’t have experience in this area of the farm. Pull someone out of the shop to try out the milking SOP, or someone from the parlor to try the SOP for running the pasteurizer. Observe them as they follow the SOP and make adjustments to any steps that aren’t clear. Finally, print and laminate the SOP and hang it in a convenient location.

Interested in having a customized Spanish/English milking routine poster created for your farm? Laminated 18x24 posters are available for $47, and 16x20 for $52. Contact Libby Gaige for more information at geg24@cornell.edu or 607-793-4847.
Upcoming Webinars:

Economic Analysis Tools for Dairy Reproduction Program

April 8, 2013
12:00 - 1:00 PM Central Time
Dr. Victor Cabrera,
University of Wisconsin - Madison

New Tools for Dairy Reproduction Programs

April 22, 2013
12:00 - 1:00 PM Central Time
Dr. Paul Fricke,
University of Wisconsin - Madison

http://www.extension.org
Save the Date...

April 2013

8 Starting a Farm on a Shoestring, 6:30 p.m. - 8:30 p.m., Riga Town Hall, 6460 Buffalo Rd., Churchville. For more information contact: Nancy, 585.315.7746

22 Starting a Farm on a Shoestring, 6:30 p.m. - 8:30 p.m., Riga Town Hall, 6460 Buffalo Rd., Churchville. For more information contact: Nancy, 585.315.7746

25 Poultry Health Workshop, 6:30 - 8:30 p.m., Benton Town Hall, Penn Yan. To register call: 315.536.5123

May 2013

6 Starting a Farm on a Shoestring, 6:30 p.m. - 8:30 p.m., Riga Town Hall, 6460 Buffalo Rd., Churchville. For more information contact: Nancy, 585.315.7746