Maximizing Forage Quality

Bill Verbeten
Cornell Cooperative Extension
NWNY Dairy, Livestock, & Field Crops Team
Take Home Points

- Pick the right seed.
- Have enough, but not too much soil fertility.
- Harvest & storage management changes quality.
What is Forage Quality?

- A high quality forage increases an animal’s production, efficiency, or health.
Increase Forage Quality by...

- Increasing digestible content.
- Increasing digestibility.
- Decreasing anti-forage quality factors.

Wisconsin
Take Home Points

- Pick the right seed.

- Have enough, but not too much soil fertility.

- Harvest & storage management changes quality.
Picking the right seed.

- Corn
- Alfalfa
- Grasses
- Small Grains
Corn: Maturity

- Later relative maturity corn will be wetter than earlier maturity varieties & delay harvest.

Table 2. Average whole plant moisture of hybrids in the 95-100, 101-105, 106-110, and 111-115 relative maturity groups at Southview Farms in Livingston Co. on the same day of harvest in 2004, 2005, 2006, 2007, and 2008. About 10-20 hybrids represented each maturity group in each year of the study.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>days</td>
<td>% moisture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-99</td>
<td>65.7</td>
<td>69.1</td>
<td>65.8</td>
<td>66.4</td>
<td>66.0</td>
<td>66.6</td>
</tr>
<tr>
<td>101-105</td>
<td>66.9</td>
<td>70.7</td>
<td>67.4</td>
<td>68.1</td>
<td>67.4</td>
<td>68.1</td>
</tr>
<tr>
<td>106-110</td>
<td>68.2</td>
<td>72.2</td>
<td>69.2</td>
<td>68.9</td>
<td>69.0</td>
<td>69.5</td>
</tr>
<tr>
<td>111-115</td>
<td>68.5</td>
<td>73.3</td>
<td>70.2</td>
<td>70.2</td>
<td>70.0</td>
<td>70.8</td>
</tr>
</tbody>
</table>

* The Western NY site was harvested on the early side in 2005, to avoid wind damage from remnants of Hurricane Katrina.

Table 3. Tasseling/silking and silage harvest dates (67-70% moisture), and number of growing degree days (GDD) from planting to silking, between silking and harvest, and total number from planting to harvest for 95-100, 101-105, 106-110, and 111-115 day hybrids planted in late April of 2003, 2004, and 2005 at the Aurora Research Farm.

<table>
<thead>
<tr>
<th>Hybrid Maturity Group</th>
<th>Tassel/ Silk</th>
<th>GDD</th>
<th>Silage Harvest</th>
<th>GDD from Silking</th>
<th>Total GDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>95-100</td>
<td>7/24</td>
<td>~1250</td>
<td>8/28</td>
<td>~775</td>
<td>~2025</td>
</tr>
<tr>
<td>101-105</td>
<td>7/27</td>
<td>~1300</td>
<td>9/5</td>
<td>~850</td>
<td>~2150</td>
</tr>
<tr>
<td>106-110</td>
<td>7/29</td>
<td>~1340</td>
<td>9/9</td>
<td>~850</td>
<td>~2190</td>
</tr>
<tr>
<td>111-115</td>
<td>7/31</td>
<td>~1380</td>
<td>9/11</td>
<td>~850</td>
<td>~2230</td>
</tr>
</tbody>
</table>

2003: 95-100, 101-105, 106-110, 111-115

2004: 95-100, 101-105, 106-110, 111-115

2005: 95-100, 101-105, 106-110, 111-115
Corn: Maturity

- Yields generally are higher with later maturities, but not as a rule.

![Graph showing 2013 NY Corn Silage Variety Trial Yields](image)

- Equation: \[y = 0.0475x + 4.2492 \]
- \[R^2 = 0.1604 \]
Corn: Fiber

- Brown Mid Rib varieties have lower lignin which increase fiber digestibility (NDFD).
- Some conventional hybrids more NDFD too.
Corn: Starch

- Varieties with vitreous endosperm have more zein protein which is more resistant to proteolytic attack than other proteins found more in floury endosperm.

- But it’s more important in corn grain.

- Fermentation reduces differences, traits not as pronounced at silage harvest.
High Sugar Corn

- **High-sugar corn**: no grain w/ yields \leq normal dent corn.

- Feeding trials have shown similar animal performance from high sugar and normal dent hybrids.

- The plants stay greener longer and require a hard killing frost to dry down to acceptable ensiling moistures in upright silos.

 - Wisconsin
Waxy Corn

- Normal corn starch contains about 75% amylopectin starch and 25% amylase starch.
- 100% amylopectin in waxy corn.
- Limited feeding trial data for corn silage suggest that waxy corn silage is equal to normal corn for forage quality.
- Waxy corn dries down slower.
- Wisconsin
High Oil Corn

- **High-oil** corn has greater energy than normal corn because the calorie content of oil is approximately 2.5 times greater than that of starch.

- Feeding trials show higher dry matter intake, but lower digestibility than silage of normal corn.

- Lower yields have been associated with elevated oil levels.

- Wisconsin
Alfalfa

- Little difference among varieties for forage quality.
Grass: Maturity

- Large range, heading dates: early, medium, late.
- May want a range of maturities in pastures.
- Late maturity in alfalfa mixtures.
- Harvest at boot stage.
Grass: Fiber

- Lots of potential for species and varietal selection.

- Species will differ in NDF.

- Plant varieties with higher NDFD.
Grass: Protein

- Some species (i.e. Timothy) are constantly 1-2% lower.
Grass: Sugar

- Some varieties & species have higher sugar.
- Large diurnal variation in sugar content.
- However much can be lost during harvest.
- Best suited for grazing systems with high fertility and moisture.
Grass: Palatability

- Again species differences and varieties differ considerably in palatability.
Small Grain Silage

- Few varieties available.
- Mostly species selection, mostly triticale, some oat, rye, & wheat.
Take Home Points

- Pick the right seed.
- Have enough, but not too much soil fertility.
- Harvest & storage management changes quality.
Fertility & Forage Quality

- Fertility has larger affects on yields than forage quality.

- Important to pay attention to the situations that matter.
Nitrogen Management

- Increasing N increases forage CP.

- Grasses & Small Grains, some in Corn Silage, little in Alfalfa
Nitrogen Management

- Accurately feed the right amount of CP

- Why? Above~16.7% CP, nitrogen goes out the back end in the urine as NH₃.

Bill Verbeten Cornell Cooperative Extension
Grass tetany

- Too much N (>25% CP) & K (>3% DM) in forage during rapid spring growth with cloudy days
 - Low forage Mg (<0.2% DM)

- Corrected by
 - Feeding MgO or MgSO3 in diet
 - (free choice mineral with 10% Mg)

 - Liming with a dolomitic lime

 - Not applying K if soil tests high-excessively high

Bill Verbeten Cornell Cooperative Extension
Doesn’t high K cause milk fever?

- Analyze all forages for mineral content
 - Feed corn silage and straw (low %K) to close up dry cows

- **Feed anionic salts (lower DCAD)**
 1. MgSO₃ until ration Mg 0.4% DM
 2. CaSO₃ or NH₄SO₃ until ration S 0.4-0.5% DM
 3. CaCl₂ or NH₄Cl until
 - DCAD = -5 to -15 milliequivalents per 100 g DM

- Keep NPN < 70% if using NH₄⁺ salts

Bill Verbeten Cornell Cooperative Extension
Doesn’t high K cause milk fever?

- Raise Ca to 1.5-1.8 % of DM

- After 1 week check urine pH
 - >7.0 add more anionic salts
 - 6.5 to 5.5, ok
 - <5.5, remove some anionic salts

- Don’t use NaCl, KCl (doesn’t change DCAD)
- Keep NPN <70% if using NH4+ salts

Bill Verbeten Cornell Cooperative Extension
Should I fertilize my soils with selenium?

- No

- Very small amounts needed in dairy rations, use a mineral mix if needed

Bill Verbeten Cornell Cooperative Extension
Take Home Points

- Pick the right seed.
- Have enough, but not too much soil fertility.
- Harvest & storage management changes quality.
Plant Maturity

- Younger plants have higher forage quality than older plants.
- CP, sugars, & fiber digestibility higher in young plants.

Understanding Forage Quality

Bill Verbeten Cornell Cooperative Extension
Harvest Timing Small Grain Silage

Feekes 9.0 (Flag Leaf) Milk Cow Quality

Feekes 10.0 (Boot Stage) Heifers & Dry Cow Quality

- Crop will be between 24-40 inches tall at harvest
- Will be ready before alfalfa-grass haylage
Harvest Management

- Lower cutting height increases yield……
- But it reduces quality

Joe Lauer, University of Wisconsin, 1998, Corn Silage Yield & Quality Trade-offs When Changing Cutting Height

Bill Verbeten Cornell Cooperative Extension
Frost Damage

Table 1. Estimated risks to corn yield potential and quality from late-season frost damage.\(^2\)

<table>
<thead>
<tr>
<th>Corn Growth Stage</th>
<th>% Potential Yield Loss (Quality Concerns)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Killing Frost</td>
</tr>
<tr>
<td>Dough (R4)</td>
<td>40 (Severe)</td>
</tr>
<tr>
<td>Early Dent (R5)</td>
<td>25 (Moderate)</td>
</tr>
<tr>
<td>Half Milk Line</td>
<td>10 (Minor)</td>
</tr>
<tr>
<td>Black Layer (R6)</td>
<td>0 (None)</td>
</tr>
</tbody>
</table>

NOTE: This table is meant as a guide. Differences among corn products, vigor at the time of frost, and subsequent temperatures will affect yield potential and quality.
Proper Processing

When corn silage has been chopped & processed properly most of the material will be in the middle screen of the Penn State Shaker Box.

<table>
<thead>
<tr>
<th>Screen</th>
<th>Pore Size</th>
<th>Particle Size</th>
<th>Corn Silage</th>
<th>Haylage %</th>
<th>TMR %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Sieve</td>
<td>0.75</td>
<td>> 0.75</td>
<td>3 to 8</td>
<td>10 to 20</td>
<td>2 to 8</td>
</tr>
<tr>
<td>Middle Sieve</td>
<td>0.31</td>
<td>0.31 to 0.75</td>
<td>45 to 65</td>
<td>45 to 75</td>
<td>30 to 50</td>
</tr>
<tr>
<td>Lower Sieve</td>
<td>0.16</td>
<td>0.16 to 0.31</td>
<td>20 to 30</td>
<td>30 to 40</td>
<td>10 to 20</td>
</tr>
<tr>
<td>Bottom Pan</td>
<td>N/A</td>
<td>< 0.16</td>
<td>< 10</td>
<td>< 10</td>
<td>30 to 40</td>
</tr>
</tbody>
</table>

Penn State University
Shredlage

- Early on-farm use in western NY is showing small increases in milk production.
Proper Processing

- **551 Samples, CVAS 2006 Crop Year.**
- Most of the corn silage has room for improvement as less than 10% of all samples have optimal processing scores.
- Shredlage corn silage is mostly “Optimally Processed”.
- The reason why most scores are lower than desired is that adjustments are often not made to the chopping equipment during harvest.

<table>
<thead>
<tr>
<th>Ranking</th>
<th>% Pass Through 4.75 mm screen</th>
<th>% of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimally Processed</td>
<td>>70</td>
<td>7</td>
</tr>
<tr>
<td>Adequately Processed</td>
<td>50-70</td>
<td>46</td>
</tr>
<tr>
<td>Inadequately Processed</td>
<td><50</td>
<td>47</td>
</tr>
</tbody>
</table>
Physically Effective Fiber

- Increase forage chop length increases peNDF.

- TMR 20-22% of particles on the 19-mm and the 8-mm sieves of the Penn State Particle Separator.

- For the forages, ≥60% should be retained on the top two sieves.
Leave Corn Silage in the Bunk

- Starch availability increases as the silage cures in the bunk or silo.

- Generally conventional corn silage varieties need to be stored for 3-6 months to maximize the availability of starch.
Balage

- Bale at 40-60% moisture.

- Use 5-8 layers of 1 ml of plastic w/50% overlap
Moisture at harvest
Proper feed-out

- Minimize area of bunker, bag, or pile exposed to air.