CALF FACILITY EVALUATION

K.M. Morrill, and E. Chittenden
Cornell University

Why?

Outline

• Why did we do this project?
• What were our objectives?
• How did we evaluate facilities?
• What did we observe?
• Moving forward

Introduction

• Respiratory disease is a great challenge
 – 12.4% of preweaned calves
 • 93.4% of respiratory challenges are treated with antibiotics
 – 66.7% of dairy operations use antibiotics
 – 31.9% of U.S. dairy operations had no respiratory challenges

USDA, 2007

• Impact of housing
 – Type of housing
 – Type of ventilation system
Introduction

• Providing calves with the best environment (housing & ventilation) and developing management protocols are key aspects to managing heifer rearing costs.

• In order for this to occur, current calf environments in NNY need to be evaluated on how they impact calf health, specifically rates of respiratory illness.

Objectives

• Evaluate rate of respiratory disease on NNY dairies

• Evaluate air quality
 – Temperature, humidity, air flow, airborne microbial concentration and ammonia levels

• Impact of housing, ventilation and air quality on calf health

Objectives

• What are we dealing with?
 – Current facilities
 – Current management practices
 – Current health challenges

• What can we do to help?

Materials & Methods

• Farm selection
 – Convenience sample of barns
 • Location
 • Referral
 • No disease outbreaks/major management changes

• One day snapshot in time
 – Environmental & health score
Material & Methods

- Evaluate:
 - Types of housing
 - Hutches, individual pens, group pens
 - Environment & potential stressors
 - Temperature, humidity, NH₃, airborne bacterial counts, bedding bacterial counts, pen size, calves/pen
 - Calf health
 - Calf health scoring
 - Management strategies
 - Survey

June, 2015

- 29 facilities
 - Hutches (n = 9)
 - Individual pens (n = 11)
 - Group pens (n = 9)
- Ventilation of barns
 - Natural (n = 8)
 - Natural + fan (n = 7)
 - Natural + tube (n = 5)
- 437 calves evaluated

Results

LOTS OF DATA

TODAY:
- Environmental evaluation
- Airborne bacteria
- Calf health scores

Also have data on...
- Stocking density
- Bedding bacteria counts
- Management practices

Environmental Assessment

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°F)</td>
<td>75.57</td>
<td>7.22</td>
<td>60</td>
<td>87</td>
</tr>
<tr>
<td>Humidity (%)</td>
<td>45.68</td>
<td>18.85</td>
<td>10</td>
<td>78</td>
</tr>
<tr>
<td>Heat Index</td>
<td>70.64</td>
<td>11.39</td>
<td>43.0</td>
<td>87.7</td>
</tr>
</tbody>
</table>
Environmental Assessment

<table>
<thead>
<tr>
<th>Housing</th>
<th>Ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hutch</td>
</tr>
<tr>
<td>Temp. (°F)</td>
<td>74.43<sup>a</sup></td>
</tr>
<tr>
<td>Humidity (%)</td>
<td>57.68<sup>a</sup></td>
</tr>
<tr>
<td>Heat index</td>
<td>68.87</td>
</tr>
</tbody>
</table>

What about ammonia?

Airborne Bacterial Counts

<table>
<thead>
<tr>
<th>Item<sup>2</sup></th>
<th>Housing</th>
<th>Ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hutch</td>
<td>Individual</td>
</tr>
<tr>
<td>Total Bacteria Count</td>
<td>4.77<sup>a</sup></td>
<td>4.62<sup>b</sup></td>
</tr>
<tr>
<td>Gram Negative Bacterial Count</td>
<td>3.24<sup>c</sup></td>
<td>3.75<sup>a</sup></td>
</tr>
</tbody>
</table>

²Means within row with different superscript letter differ (P < 0.05).
³ All data presented in Log10 format and CFU/m³

- No difference (TBC & GNBC) by bedding type utilized in facility

Airborne Bacterial Counts

Gram negative bacteria by temperature range

\[y = -0.424x + 4.8671 \]
\[R^2 = 0.9909 \]

- No relationship between TBC and temperature range or airflow.

Calf Health

<table>
<thead>
<tr>
<th>n</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>437</td>
<td>3.95</td>
<td>6.10</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>437</td>
<td>0.29</td>
<td>0.48</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>437</td>
<td>0.22</td>
<td>0.52</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>437</td>
<td>0.06</td>
<td>0.28</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>437</td>
<td>102.08</td>
<td>0.80</td>
<td>99.1</td>
<td>105.7</td>
</tr>
<tr>
<td>437</td>
<td>0.63</td>
<td>0.891</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>437</td>
<td>0.13</td>
<td>0.35</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>437</td>
<td>2.46</td>
<td>1.701</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>
Calf Health

Nationally
- 12.4% of preweaner heifer calves had a respiratory disease.
- 93.4% of these calves were treated with antibiotics. "USDA, 2007"

Calf Health

Number of farms by prevalence of respiratory disease in calves

Nationally
- Two-thirds of operations (66.7%) used an antibiotic to treat respiratory disease in preweaner heifers.
- One-third (31.9%) had no respiratory disease in preweaner heifers.

Calf Health

Relationship between respiratory score and pen temperature

- No difference in respiratory score by:
 - Housing type
 - Bedding source
 - Ventilation system
 - Relative humidity
 - Pen airflow
 - Airborne bacterial counts

Calf Health

Conclusion
- 63% of farms in NNY are dealing with respiratory challenges in pre-weaned calves
 - Minimal impact from environmental factors
 - Calf pen temperature
- Need to focus on what is causing these challenges
 - Evaluate management practices
Moving forward

- Evaluate management practice
- Evaluate respiratory disease rates in winter
- Work with producers to evaluate current calf facilities and management practices

What type of facility should I build?

- What do you have experience with?
- What can I manage?
- What changes am I will to make?

Questions???