Inside this issue:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Pastures and Foot Rot</td>
<td>2</td>
</tr>
<tr>
<td>Preventative Planting Chang-</td>
<td>3</td>
</tr>
<tr>
<td>Soil Compaction</td>
<td>4</td>
</tr>
<tr>
<td>Maximizing Glyphosate</td>
<td>5</td>
</tr>
<tr>
<td>Priming the Pump</td>
<td>6-7</td>
</tr>
<tr>
<td>African Swine</td>
<td>8</td>
</tr>
<tr>
<td>Keeping Milk Production high with poor forage</td>
<td>9</td>
</tr>
<tr>
<td>Onboarding at the Farm Level</td>
<td>10</td>
</tr>
</tbody>
</table>
Wet Pastures and Foot Rot

By: Glenn Selk, Oklahoma State University Emeritus Extension Animal Scientist

Spring rains have filled the ponds and saturated the ground in many pastures. As the temperatures heat up, cattle will start to congregate around or in the ponds or other standing water. One of the challenges that cattle producers may face this summer is the occasional lame cow or yearling. “Foot rot” is a common cause of lameness in beef cattle on pastures. Foot rot is an infection that starts between the toes of the infected animal and usually is a result of the introduction of a bacteria through broken skin. The infection causes pain and the resulting lameness. The lameness can cause decreases in weight gain of young cattle, milk production decline of adult cows and lame bulls will be reluctant to breed.

Treatment of foot rot can be successful when the treatment is started early in the disease process. Most cases require the use of systemic antimicrobial therapy. Your local large animal veterinarian will advise you on recommended antibiotics and dosages for your situation. Severely infected animals that do not respond to initial treatments will need to be re-evaluated by the veterinarian and more involved treatments may be required to salvage the animal. There are other causes of lameness. Therefore a proper diagnosis is important before treatment begins.

Preventative measures revolve around prevention of mechanical damage to the foot. Recently brush-hogged weeds or brush stubble will often be very sharp and cut the skin between the toes allowing the entrance of the infective bacteria. If possible, avoid forcing cattle to spend long periods of time standing in very wet lots or pastures. Utilizing a good mineral program that contains the micro minerals zinc, selenium, and copper will aid in disease prevention. A three year study in Kansas has shown that zinc methionine added to a free choice mineral supplement reduced the incidence of foot rot in steers grazing summer pasture.

Because cattle inflicted with foot rot are commonly treated with antibiotics, it is critical that producers follow their veterinarian’s instructions and label directions precisely. Because these are individual treatment incidences, ranchers may tend to neglect to keep the proper records of the treatments. Record the date, the dosage, route of administration, the lot number of the antibiotic given and the person giving the treatment. Then observe the drug withdrawal times completely before marketing the animals that have been treated.
This “additional relief” from USDA has critical implications for NY livestock producers with prevented planting claims

In response to delayed and prevented planting resulting from above average rainfall and wetness, the USDA Risk Management Agency has made a one-time change to the 2019 crop year prevented planting rules that effectively allows silage corn, if planted as a cover crop following local agricultural expert guidelines, to be acceptable as a post-prevented planting cover crop. Under this one-time rule change, producers are allowed to produce this crop while retaining their prevented planting payment. This change couples with previously announced one-time changes to the prevented planting rules - including expanded acceptable uses for post-prevented planting cover crops and a change in the cover crop haying and grazing start date rule - serve to help those struggling to meet their forage needs due to the weather.

The USDA-RMA states that “For crop insurance purposes, a cover crop is a crop generally recognized by agricultural experts as agronomically sound for the area for erosion control or other purposes related to conservation or soil improvement.” Cornell University experts have released a letter stating “Corn on Prevented Planting acres meets these objectives”, available here.

We recommend you speak to your crop insurance agent to see what prevented planting options are available to help you cope with the difficult planting conditions.

Additional Resources can be found online at: https://www.agriskmanagement.cornell.edu

For more New York State crop insurance resources, visit www.agriskmanagement.cornell.edu

Cornell University delivers crop insurance education in New York State in partnership with the USDA, Risk Management Agency. This material is funded in partnership by USDA, Risk Management Agency, under award number RM18RMETS524C018.

Diversity and Inclusion are a part of Cornell University's heritage. We are an employer and educator recognized for valuing AA/EEO, Protected Veterans, and Individuals with Disabilities.
Soil Compaction

By: Kevin Ganoe, CNY Field Crops Specialist

Since the beginning of October 2018 wet weather has made it tough to get crops off, manure spread and crops planted. So to talk about preventing soil compaction now doesn’t seem very helpful when at times if you could get in the field to do some work you just did it; getting crop in became the overriding issue especially if you have animals to feed over the next year. But I get called to look at problem situations every year, this year being no exception, and soil compaction in one way or the other seems to play into those difficulties.

A good holistic term, soil health, has been adopted as it looks at not only what we can do to fix soil compaction but also looks at what we can do to make soils more resilient to soil compaction in the future. There are always going to be situations where we are stand the risk of causing soil compaction so we need to look at long term how we reduce that risk. Much has been written and discussed about soil health and if you are looking for a good written resource I would suggest the Comprehensive Assessment of Soil Health, The Cornell Framework manual found at: http://soilhealth.cals.cornell.edu/training-manual/.

Soil compaction is easily defined as reducing this pore space; think of a sponge getting compressed. A sponge very typically will spring right back unless it is old and used a lot. Soils don’t decompress on their own. Once compacted it can take a great deal of work to get them uncompacted. Until that pore space is opened back up the luck of air and the inability of roots to penetrate the solid portion leads to poor crop growth. Don’t miss the fact the biota mentioned above is important to soil health and best maintained when soils have the right balance of water and air in the pore space.

There is typically recognized two kinds of compaction in the soil, surface compaction from 0-6 inches and subsurface compaction more 6-18 inches. What I believe the concept of soil health has helped recognize is the effect surface compaction has on plant growth. Too often in the past the subsurface compaction due to heavy and repeated equipment traffic creating a lower compacted area was given all the attention. The is attention was likely due to the fact the solution was to come in and break that pan up with more tillage.

Don’t forget that tilling deeper doesn’t create more soil and better drainage. Given many of our soils have a natural limiting compacted horizon and a subsoil that isn’t draining water anywhere tilling deeper, ripping, is a short term solution and one that works in the most compacted areas like headlands.

The bigger problem, and one more complicated to fix is the surface compaction where most of the plant growth is taking place. Certainly equipment weight and tillage affect surface compaction by reducing soil structure but even just rainfall on a bare soil can cause a great deal of compaction by reducing soil structure. Compacted soils show puddling where water just lays and the surface becomes crusted. This past week I saw a number of no-till fields where you couldn’t tell where the seed furrow was because the soil in the all the rain had flowed back across the rows leaving the surface smooth. We have all used the phrase “the field was just like concrete” and I can’t think of a better example especially if magic happens and the temps turn to 90 degrees and the rain shuts off.

So lets circle back around to the idea that this year if you are looking for feed you maybe just happy to have corn in the ground even if the soil is puddled and too much like concrete. Here are a few ideas that may make the soil long term have better health, less compaction and more resiliency when the crop season turns against us:

Don’t use fields as roadways. Better to have defined traffic areas than farm equipment just repeatedly running across fields. Keep your compacted areas limited to the degree you can in a small area is really is better than spreading that compaction our over a whole field or fields. May take an extra minute in travel time or create an area that you don’t get crop of at all but it is worth it.

Use cover crops when you can. Your nutrient management and conservation plans may require cover crops to prevent erosion, nutrient runoff and leaching but don’t miss the effect of improving soil health. Cover crops prevent rain drops from impacting the soil surface and the roots system help to build soil structure. Winter grains that are harvested aren’t always viewed as cover crop but used for forage, grain and or straw they deserve your consideration to keep soil covered over the winter months.

Maintain crop residue. I really wanted to put this one first but realize it applies more to crop farms than our dairy acres. Crop residues do a good job of protecting the soils. Keeping a crop rotation and using row cleaners can keep the residue from becoming too thick to plant through. If you are looking for a number, 60% or greater residue cover right after planting is a good value to shoot for.

No-till your crops. Tillage destroys soil structure which is why soils that have really degraded soil health should be put in a sod crop for a number of years before attempting no-till. No-tilling into a sod is the best way to start if you can; even a year out of row crops and tillage can help heal the soil. Dairy farms where dealing manure and getting crops off while leaving of wheel tracks can be tough place to implement no-till but reducing tillage where you can is always a plus.

Keep a crop rotation. Long term row cropping with tillage can lead to poor soil health.

I started this article suggesting one of the benefits to reducing compaction and improving soil health could be some resiliency in tough environments. Wet springs, like this one is one, is when I hear from those that have no-tilled for a number of years is where it really pays off. Being able to get on fields because there is support for equipment while there is less of a mud factor makes the attention to reducing soil compaction and improving soil and soil health worth while.
Best Management Practices for Maximizing Glyphosate Efficacy
By: Tom Peters, Extension Sugarbeet Agronomist, NDSU & U of MN
North Dakota State University
CROP & PEST REPORT June 13, 2019

Most crops are planted, and growers will now shift their attention to controlling weeds. Understanding the factors that influence glyphosate performance, especially in fields with glyphosate resistant weeds will maximize efficacy.

**Glyphosate concentration in selected glyphosate product.** Glyphosate products are formulated in many different acid-equivalent concentrations. Concentration, measured as acid equivalent, will determine your use rate. **Use full labeled rates.** Use rate is determined by the size and type of weed species in the field. In general, the bigger the weed species, the higher the use rate needed for control. Annual weeds are best controlled when they are in an early growth stage, actively growing, and less than four inches tall.

**Larger and older weeds are more difficult to control.** More mature or hardened-off annual weeds may require full rates, even if they are smaller in size. Environmental stress, such as dry weather, thickens plant cuticle and causes weeds to be short for their age, requiring a higher rate for good control.

**Be aware of glyphosate resistant weed species.** Weed species differ in their sensitivity to glyphosate. Some weed species have natural tolerance to glyphosate, while others are resistant and commercially acceptable control is unlikely, regardless of the application rate. Tank-mixing herbicides with different and effective modes of actions and other weed resistance management practices in these situations can help to provide more consistent control of tolerant or resistant weeds. Using lower than labeled rates can lead to poor weed control and potentially select for resistant weeds.

**Always add nonionic surfactant at 0.25 percent v/v (volume to volume) to fully loaded formulations (unless the label prohibits), especially to improve common lambsquarters control and at 0.25 to 0.50 percent v/v to partially loaded formulations and at 0.5 to 1.0 percent v/v to non-loaded formulations.** Surfactants increase spray solution spreading on leaves, improving plant uptake and translocation of glyphosate. Addition of crop oil concentrate or methylated seed oil is not recommended with glyphosate.

**Always add ammonium sulfate (AMS) at 8 lb/100 gal (or liquid AMS at 2.5 gallon/100 gallon water to increase penetration into the plant for weed control and to condition hard water.** AMS reduces the antagonistic effects of hard water.

**Spray volume and droplet size matter.** Glyphosate spray volumes alone of 5-10 gallons per acre (GPA) provides adequate coverage of weeds. Higher volumes (10-20 GPA) can be beneficial in situations with dense weed infestations, well developed crop canopies, large weeds and when applying in combination with contact or soil residual herbicides. Coverage can also be optimized by nozzle selection.

---

Note: Thanks to Tom Peters for this check off list of items to consider for glyphosate to work its best. As always read the label for the correct use of the glyphosate containing product you have purchased. -Kevin

---

**About Growing Degree Day (GDD) Maps**
Degree days are a means by which turf and weed development can be monitored.
Priming the Pump
Setting-up the Transition Cow for Success
By: Timothy Terry, Harvest NY

We all know that if you can get a cow or heifer through the three weeks pre-calving, calving, and then the three weeks post-calving without incident then it’s very likely she will successfully complete the lactation. It’s pretty safe to say that the transition is a very critical period in a dairy cow’s life. Let’s face it, you’re basically trying to turn a couch potato into an Olympic-class athlete almost overnight.

When the system works it really works. However, when the 60-day cull rate begins to spike where is the first place we look to lay the blame? The nutritionist, right? Not quite, Univ. of Wisc. – Madison (UW-M) studies have shown that unless the diet is way off on protein, fiber, DCAD, etc. it doesn’t even make the list. Fortunately, there are five other factors that exert a greater influence and all can be controlled with good management.

Fabulous Five

1. Adequate Bunk Space – This is the most important factor affecting animal performance. It’s likely this is why we tend to think it is a nutritional rather than facilities problem – either way the animals are not getting the diet they require.

Ideally, you want all animals in both the prefresh and post fresh groups to be eating simultaneously (within group) to maximize the 90-minute period following fresh feed delivery and milking. If a more timid animal is excluded from eating at this time by more aggressive pen mates they generally will not eat as much when, or if, they return later on.

Figure on a minimum of 30” of bunk space per cow. Bunk length must be calculated on this spacing per cow not on the number of headlocks at the bunk. Standard headlocks are on 24” centers, and this is fine for the remainder of the herd. However, for these two groups the headlocks or vertical dividers must be 30” on center. Some sort of indexing barrier is preferable to a simple feed rail because when feeding at a rail a boss cow will often stand at an angle to the bunk thereby occupying two or three spaces (60”-90”). Headlocks or vertical bars encourages them to stand perpendicular to the bunk thus freeing up the other one or two spaces.

To avoid overstocking and reducing bunk space during calving surges multiply the average number of calvings for the period by 140% and calculate bunk length and pen size based on that number of animals. Yes, this may seem overbuilt, but how much production is lost and money expended to treat early lactation maladies such as retained placentas, metritis, ketosis, milk fever, etc.?

2. Appropriately Sized Stalls - Late gestation cows, especially large framed breeds like Holsteins and Brown Swiss, require extra space when negotiating freestalls. On average cows are not getting smaller so the old freestall standard of 45”- 48” x 66” (brisket board) has been upgraded to 50”- 54” x 70”-72”.

This is just for the prefresh and post fresh groups – the previous dimensions still work for the rest of the herd. However, a 45” x 63” freestall will accommodate smaller breeds like Jerseys.

Is it worth it? Dr. Ken Nordlund, faculty researcher at UW-M (emeritus), relates the story of a herd he worked with on some transition cow issues. Prior to upgrading the stalls to the new dimensions there was a disparity in ME corrected milk between the first calf heifers and the mature cows. The first calf heifers did well, but the mature cows showed a 2,000 lb. deficit. After retrofitting the stalls, the deficit disappeared.

If the groups are on bedded packs (or composted pack) figure on 100 – 120 square feet per animal on the pack. Feed alleys are in addition to this number.

Continued on next page...
3. Soft Stall Surfaces – We know that deep bedded sand is the gold standard in the milking barn, and it’s no different here. Time budgets, hock lesions, locomotion scores, etc. are all improved on sand. However, when sand is not an option because of your manure handling system or other difficulty, deep bedded sawdust or chopped straw/hay works almost just as well. Unfortunately, according to UW-M studies mattresses didn’t fare as well. In fact, they noted that animals housed on stalls with mattresses spent more time standing or perched in the stalls, less time eating, and produced as much as 8 lbs. less milk per day. However, mattresses with >2” of bedding faired almost as well as deep bedded sand and may be a reasonable substitute where sand is not an option. Concrete, however, even with bedding or mattresses, is never an option for transition cows.

For bedded packs and composted packs figure on a minimum of 3” of bedding – sand, sawdust, straw – over a compacted, well drained subgrade.

4. Minimize social stress. No, that doesn’t mean you take away their Facebook, Twitter, and SnapChat privileges. It does, however, mean you need to limit the addition of new animals to only once per week. Any time animals are added to an existing group social turmoil ensues for the next 24-48 hours while the new additions are initiated and pecking orders are re-established. Often these interactions are quite physical and can result in terminal injuries. As you can imagine daily or even 2X-3X per week additions keeps the group in a constant boil. This may seem innocuous, but think of it this way: if the animals are running around and butting heads they are neither eating nor resting. As a result stress hormones increase, dry matter intakes decrease, and body fat is mobilized, which leads to an increased likelihood of fresh cow diseases such as ketosis and DA’s. Moreover, if animals are moved into the prefresh pen 3 to 10 days prior to calving the likelihood further increases.

In a perfect world, each week you would assemble a group of late gestation cows and heifers whose expected calving dates are within a ~7-day window and at least three weeks out. You could adjust that range based on the number of animals or if there are any large breaks in the expected calving dates. The last thing you want to do is move only one animal (if it’s at all avoidable) or overload the prefresh group (see #1 & #2).

In larger herds an all-in strategy could be implemented and the animals managed as a specific group. As animals freshen and the group is depopulated the pen should be cleaned and sanitized prior to the new group coming in. Obviously, this means there would have to be at least three, preferably four, smaller pens in order to rotate the groups in and out.

For smaller herds the far-off dry cow and prefresh pens could be located adjacent to one another with only a bar gate between them. From a social standpoint this is really just one large pen so moves of animals from one group to the next may go unnoticed. (Of course, there’s always the potential for one boss cow to exhibit anti-social behavior.)

Just-in-time calving, where cows and heifers are moved just as the feet or head of the calf is showing, is gaining popularity on some larger dairies. Unfortunately, while it can be successful, this can also be a very labor intensive strategy. It requires 24-hour surveillance with someone walking past the pen every 30-60 minutes to pick up on cows in labor. The workers must be knowledgeable and observant enough to move the cow at just the right time – when calf parts are visible, not just mucous showing. Moving the cow too early increases the likelihood of stillbirth by 250%. Time in these calving pens should only be hours not days. Cows tend to shed the most Mycoplasma and Salmonella right at freshening. So the pen should be cleaned and rebbed after each animal.

5. Effective Fresh Cow Protocols. As with the calving pens, so too, you need heads-up herdsmen and effective protocols in place to detect and treat early signs and symptoms of fresh cow maladies.

Research has shown some protocols common to successful fresh cow programs:
- Following cows to and from the parlor to observe behavior, gait, etc.
- Palpating udders in the parlor to check for fullness
- Time at feedbunk upon return to the pen – evaluating attitude and appetite
- Daily rectal temperatures
- Checking rumen motility with a stethoscope

So there you have it. Five manageable factors for promoting the success of the transition cow.
African Swine Fever

By: Ashley McFarland, Area Livestock Specialist

Are you ready for what could be a devastating economic loss to your hog operation? African swine fever (ASF) is a new threat to the United States and has been rapidly spreading across Asia and parts of Europe for the past few years.

African swine fever is a highly contagious, resistant and deadly disease that affects all ages of domestic and wild hogs. This disease is viral and cannot be transmitted to humans. The disease can be introduced to uninfected herds a number of ways: feeding contaminating feed products to supplement feed (table scraps); bites from soft-bodied insects, such as ticks, flies, lice; inoculation with contaminated syringes and surgical equipment; introduction of new pigs to the herd; and semen. Transmission of the virus within the herd is generally through direct contact with infected bodily discharges, feces, vomit and dead carcasses.

ASF has been tested and can live in an environment, feces, and tissues of infected swine for several months. This disease can remain active even while being frozen and smoking the meat products will not kill the disease. ASF is a high morbidity and high mortality disease. Currently, there is no vaccine or treatment for the complex, hardy disease.

Why and how could the United States receive this disease from China? Most producer’s main concerns have been live hogs coming into the United States. Unfortunately, that is not how the United States Dept. of Agriculture feels we will encounter this horrific untreatable disease. The United States purchases feed ingredients from China that is a form of contamination we could receive it in on. There is also thought of receiving it in on raw meat products. ASF could destroy a large percentage of the United States hog population. If the United States tested positive for ASF, the US would lose exporting privileges of pork products to other countries until eradicated.

The key clinical signs of ASF are: blue/purple around the snout area, ears, tail and lower legs, high fever, loss of appetite, depression, lethargic, vomiting and/or diarrhea with bloody discharge, and heavy discharge from eyes and nose and comatose state and death within a few days.

“Pigs that die early on in an outbreak may not have any noticeable lesions. As the disease progresses the lesions then are striking and very noticeable. “Bright red hemorrhages in the lymph nodes, kidneys, heart and linings of the body cavities are common findings. There may also be excess hemorrhagic fluid in the body cavities and gelatinous fluid in the lungs. The spleen may be enlarged, darkened and crumble on slight pressure.”-Iowa State University

“It is vital to immediately distinguish the disease that is infecting a herd; ASF and classical swine fever are caused by very similar viruses which are only distinguishable by laboratory testing. Notifying a vet as soon as any signs arise is the best way to ensure the correct quarantine and treatment procedures are followed – it could save the rest of your herd.”-Iowa State University. If you see these symptoms in your herd please contact your vet and local authorities if you believe this disease is affecting your herd.
This extremely wet spring has been a real challenge for dairy producers. Hay crop harvest was greatly delayed. First cut hay crop is much poorer in quality than we’d like it to be. Corn planting was delayed. Some fields that were to be corn grain will be corn silage.

We know that high quality forage is the foundation of a feed ration that can support high levels of milk production. We know that we can only partially compensate for poor quality forage by feeding more grain. When you feed poor quality forage you lose two ways. You spend more money on grain AND you end up with lower milk production.

We also know that dairy farms that achieve higher levels of productivity have a much higher likelihood to be more profitable. So, what can Dairy Producers do to compensate for this poorer quality forage? Do what you can to capture as much high quality forage for the lactating cows.

Hopefully you have harvested a little bit of good quality first cutting. Get that poor quality first cut off if you have not done so yet, so that second cut will regrow. If you’re tight on storage space don’t fill it with poor quality feed. Save that space for top quality feed. If you must pile some feed on the ground, be sure it’s the poor stuff. You don’t want to take big storage losses on your top quality feed. Allocate this poorer feed to animals with a low energy demand and be sure diets are rebalanced to meet the animal requirements.

If you have large quantities of corn silage on hand and/or will have more corn silage this year because your late planted corn will not make grain, you can shift to a heavier corn silage diet. That will help to dilute some poorer haycrop, if that is what you end up having on hand.

If you have no choice and have to feed some of this poor quality hay crop you should seriously consider adding a highly digestible fiber source to your diet. Ingredients like soy hulls, brewer’s grain, citrus pulp, and beet pulp fit into this category. There will be some additional cost, but cows will milk much better if the appropriate ration adjustments are made. As an example, 4 lbs. of soy hulls could replace 9 pounds of (40% dry matter) haylage in the diet. To get a milk production response with these ingredients you’ll need to partially or completely use them to replace some of the poorer quality forage. The result of this kind of substitution would be similar to having higher quality forage in the first place. You’d be taking out some of the high fiber forage that is poorly digested and replacing it with a highly digestible fiber source.

Don’t be afraid to try some of these strategies. Work with your nutritionist to come up with a strategy to keep the cows milking well and a plan on how to use some of that poor quality first cutting that you probably have plenty of.
Onboarding at the Farm Level

By: Nicole Tommell, Farm Business Management Specialist

Have you ever noticed that some farms have had the same employees for years while others struggle to keep them or an employee was gainfully employed then jumps ship and goes the neighbor farm down the road or the next county? Unfortunately this happens all too often in our field. However, it doesn’t have to be a constant turnover. Here is how we can help!

When it comes to buzzwords in the human resource world, “onboarding” is a relatively new term. Many have never heard of it, and some after learning the definition couldn’t be bothered! A quick Google search landed this definition “the action or process of integrating a new employee into an organization or familiarizing a new customer or client with one's products or services”.

Basically, onboarding is a fancy word for On-the-Job Training (OJT). All of us have had OJT at one point in our lives or another. However, Onboarding goes further than the 1st day or the 1st few days of employment. Onboarding is designed to assist the business and the employee to be successful from the very beginning. Studies have shown that if an employee has a positive onboarding experience, their likelihood of staying at the place of employment for more than 3 years is about 69% (Society for Human Resources Management). In addition to less turnover, employees are approximately 50% more productive and 54% more engaged (Society for Human Resources Management).

Conversely, if an employee is poorly on boarded, more times than not, this sets employees up for failure. The first impression can be the make or break of whether or not that employee returns tomorrow or leaves as soon as they can find another job. The onboarding process hopes to eliminate that experience (the best one can) and serve as a positive experience for the new hire.

From the employer perspective, there is much to be gained. Here are a few tips the Cornell Cooperative Extension Agricultural Workforce Development Team was able to demonstrate by moving to an onboarding program:

◊ Ensure compliance with basic regulations and policies.
◊ Provides clarification on work procedures and expectations, which result in better performance and safety.
◊ Establishes a workplace culture based on values, philosophies, and traditions
◊ Creates a connected relationship at work that allow employees to engage and thrive.
◊ Increase employee commitment and decrease turnover

Over the next year, the Ag Workforce Development Team will develop onboarding materials, trainings and methods with 25 farms in NYS with a goal of 50 farms in two years. If your farm is looking for a way to improve employee retention and increase overall productivity of employees, I am looking for 5 farms to participate in this pilot program over the next year with more added in 2020. Please contact me for more information and a flyer about this exciting program!

---

Diversity and Inclusion are a part of Cornell University’s heritage.
We are recognized employer and educator valuing AA/EO, Protected Veterans and Individuals with Disabilities.
Upcoming Events with CNYDLFC...

July 9—Dairy Cattle Summer Research Update—Schuylerville, NY 7-9 pm
July 16— Dairy Cattle Summer Research Update—Milford, NY 7-9 pm
July 24— Organic Dairy Profit Discussion Group—Dryden, NY 10:30 pm
July 30— Beef Quality Assurance Training—Cooperstown, NY 6-8 pm
July 29/July 30— Sexual Harassment Training for Employers (Various locations) 10am—1 pm
July 25-27—Grasstravaganza at SUNY Cobleskill—Deadline July 12th!

Stay tuned for Kevin and Dave’s Pre-harvest meetings at the end of August!
Central New York Dairy, Livestock and Field Crops Team

Kevin H. Ganoe, MS, CCA
  Team Leader
  Area Field Crop Specialist
  Phone: 315-866-7920 Ext 230
  Cell: 315-219-7786
  E-mail: khg2@cornell.edu

Ashley McFarland, PAS
  Area Livestock Specialist
  Phone: 315-866-7920 Ext 228
  Cell: 315-604-2156
  E-mail: am2876@cornell.edu

David R. Balbian, MS, PAS
  Area Dairy Management Specialist
  Phone: 518-312-3592
  E-mail: drb23@cornell.edu

Nicole L. Tommell, M. Ag.Ed
  Farm Business Management Specialist
  Cell: 315-867-6001
  Email: nt375@cornell.edu

A program and funding partnership between Cornell University,
Cornell Cooperative Extension and the
Cornell Cooperative Extension Associations of
Chenango, Fulton, Herkimer, Madison, Montgomery,
Otsego, Saratoga and Schoharie Counties.

https://cnydfc.cce.cornell.edu/

Building Strong and Vibrant New York Communities
Cornell Cooperative Extension provides equal program and employment opportunities