

Managing the Soil to Manage the Pasture

Bill Verbeten
Regional Field Crops Specialist
NWNY Dairy, Livestock, & Field Crops Team
Cornell Cooperative Extension

Take Home Points

- Optimal Soil pH Maximizes Nutrient Availability
- Set Realistic Yield Goals
- Replace Nutrient Removal by
 - Using Manure
 - Applying Fertilizer When Necessary
- What Does and Does Not Improve Pasture Fertility

Take Home Points

- Optimal Soil pH Maximizes Nutrient Availability
- Set Realistic Yield Goals
- Replace Nutrient Removal by
 - Using Manure
 - Applying Fertilizer When Necessary
- What Does and Does Not Improve Pasture Fertility

Pasture Sampling Soil

 Take 2-3 samples per acre up to 10 acres for each sample.

 Sample different soil types/drainage areas separately.

 Regularly sample pastures every 3-4 years at the same time of the year.

Correcting Soil pH

 Most grasses and legumes grow best when soil pH is 6.0-6.5.

• Some grasses (i.e. tall fescue) and legumes (i.e. clovers) are more tolerant of lower pH levels (5.5 to 6.5).

 Liming recommendations on soil test report.

How Lime Works

Neutralization Step 2

$$AI(OH)_3 + CO_2 + H_2O$$

Neutral Compounds

Liming Materials

Common Name	Chemical Formula	CCE
Calcitic Limestone	CaCO3	100
	MgCO3	119
Burned Lime, Quick Lime	CaO	179
Hyrdated Lime, Slack Lime	Ca(OH)2	136
Dolomitic Limestone	CaMg(CO3)2	109
	CaSiO3	86
Wood Ash	Variable	50-80

 Increases mesh size only increases speed of the reaction (only use 20 to 100 mm mesh lime)

Cornell ENV

 The ENV is the fraction of the material's CCE that will react with soil acidity in the first year of application.

 The ENV is calculated by multiplying a liming material's CCE and its fineness.

 As an example: a liming material with CCE of 90% and a fineness of 0.86 has an ENV of 90*0.86= 77.4.

Correcting Soil pH

 No yield or quality responses to changing base saturation ratios.

 Increasing pH (up to 7.0) increases nutrient availability to pasture plants.

Take Home Points

- Optimal Soil pH Maximizes Nutrient Availability
- Set Realistic Yield Goals
- Replace Nutrient Removal by
 - Using Manure
 - Applying Fertilizer When Necessary
- What Does and Does Not Improve Pasture Fertility

Set Realistic Yield Goals

Crop	Tons DM/acre	Tons AF/acre
Pastures	3-5	12-25
Haylage, seeding year	2-3	4-6
Haylage, 1 st through 3 rd production years	4-6	8-12
Corn Silage	6-10	18-30
Small Grain Silage	2-4	5-10

Set Realistic Yield Goals

Set *separate yield goals* for *each pasture* based on multiple years of yield data.

What's My Farm's Yield Potential?

Go to http://forages.org/tools/fsst.php?t=2

 Enter county, zip code, animal use, drainage, and soil type.

 Yield potential given for a number of mixtures for local conditions

Take Home Points

- Optimal Soil pH Maximizes Nutrient Availability
- Set Realistic Yield Goals
- Replace Nutrient Removal by
 - Using Manure
 - Applying Fertilizer When Necessary
- What Does and Does Not Improve Pasture Fertility

Crop Removal of Nutrients

Source: Reference Sufficiency Ranges for

Plant Analysis in the Southern US

Crop Removal of Nutrients

Sufficiency ranges in plant tissue samples

Legumes

Macronutrients					
N P K Ca Mg S					
3.00-5.00%					

Micronutrients					
Fe Mn Zn Cu B					
30–250 ppm 25–100 ppm 20–70 ppm 4–30 ppm 20–80 ppm					

Source: Reference Sufficiency Ranges for

Plant Analysis in the Southern US

Crop Removal of Nutrients

Sufficiency ranges in plant tissue samples

Grasses

Macronutrients					
N P K Ca Mg S					S
2.50-3.50%					

Micronutrients					
Fe Mn Zn Cu B					
50–250 ppm 50–200 ppm 20–50 ppm 3–10 ppm 5–20 ppm					

Source: Reference Sufficiency Ranges for

Plant Analysis in the Southern US

Bill Verbeten Cornell Cooperative Extension

Crop Removal of Nutrients

Legumes

Nutrient	Lb/ton DM
N	80
Р	6
К	49
Ca	30
Mg	6
S	6
В	0.08
Zn	0.05
Mn	0.12
Cu	0.01
Fe	0.33
Mo	0.002

Grasses

Nutrient	Lb/ton DM
N	40
Р	14
K	60
Ca	30
Mg	6
S	5
В	0.08
Zn	0.05
Mn	0.12
Cu	0.01
Fe	0.33
Mo	0.002

Source: Alfalfa Fertilization

http://learning store.uwex.ed u/assets/pdfs/ A2448.pdf

Bill Verbeten Cornell Cooperative

Crop Removal of Nutrients

Legumes

Nutrient	Lb/ 5 ton
N	400
Р	30
K	245
Ca	150
Mg	30
S	30
В	0.40
Zn	0.25
Mn	0.60
Cu	0.05
Fe	1.65
Мо	0.01

Grasses

Nutrient	Lb/ 5 ton
N	200
Р	70
K	300
Ca	150
Mg	30
S	25
В	0.40
Zn	0.25
Mn	0.60
Cu	0.05
Fe	1.65
Mo	0.01

But cows recycle nutrients?

Grazing cows remove 2 lb P and 10 lb K per ton of feed grazed.

Grazing cows removing 5 ton DM/acre remove 10 lb P and 50 lb K per acre of pasture

Pasture Fertility Management

Soil test and correct pH

 The fertility of pasture systems should be built up to maintain 3-5 tons of dry matter per acre.

• Once soil fertility levels are built up, then use lower applications of manure, fertilizers, and lime to maintain.

Fertilizer Value of Manure

 Testing is the only way to accurately determine manure nutrient value

How do I manage all my pastures?

• Enter yield goals, pasture, manure, and fertilizer into *Cropware Classic*: available for free at:

http://farminfotech.com/CropwareDownloads/InstallCropwareClassic. 1.0.18.exe

Use Web Soil Survey for soil types and RUSLE loss (T value)

http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm

Take Home Points

- Optimal Soil pH Maximizes Nutrient Availability
- Set Realistic Yield Goals
- Replace Nutrient Removal by
 - Using Manure
 - Applying Fertilizer When Necessary
- What Does and Does Not Improve Pasture Fertility

Why apply nitrogen?

Most pastures are less than 75% legumes.

	Yield Potential (tons DM/acre)			
Stand Composition	1-2	2-4	4-6	6-8
100% grass	50	75	100-150	150-200
75% grass, 25% legume	25	50	75-100	100-150
50% grass, 50% legume	0	25	50	75
25% grass, 75% legume	0	0	25	50

Reference:

http://extension.usu.edu/files/publications/publication/AG-FG-_03.pdf

Why apply phosphorus & potassium?

 Grasses outcompete legumes for P & K when soil levels are low.

 Regular applications of P & K are necessary for long term legume persistence.

Should I worry about calcium and magnesium replacement?

- If you maintain soil pH through regular liming---NO
- Five tons of DM removed, removes 150 lb/ac of Ca and 30 lbs/acre of Mg
 - However 80% will of this will be in manure/urine if intensively grazed. (30 lb Ca & 6 lbs Mg/acre removed)

Common Name	Chemical Formula	Ca lb/ton	Mg lb/ton
Calcitic Limestone	CaCO3	800	0
Dolomitic Limestone	CaMg(CO3)2	435	260
Cow Manure	Variable	~7	~2

But what about grass tetany?

- Too much N (>25% CP) & K (>3% DM) in forage during rapid spring growth with cloudy days
 - Low forage Mg (<0.2% DM)
- Corrected by
 - Feeding MgO or MgSO3 in diet
 - (free choice mineral with 10% Mg)
 - Liming with a dolomitic lime
 - Not applying K if soil tests high-excessively high

Doesn't high K cause milk fever?

- Analyze all forages for mineral content
 - Feed corn silage and straw (low %K) to close up dry cows
- Feed anionic salts (lower DCAD)
 - 1. MgSO3 until ration Mg 0.4% DM
 - CaSO3 or NH4SO3 until ration S 0.4-0.5% DM
 - CaCl or NH4Cl until
 - DCAD = -5 to -15 milliequivalents per 100 g DM
- Raise Ca to 1.5-1.8 % of DM
- After 1 week check urine pH
 - >7.0 add more anionic salts
 - 6.5 to 5.5, ok
 - <5.5, remove some anionic salts
 - Don't use NaCl, KCl (doesn't change DCAD)
 - Keep NPN <70% if using NH4+ salts

Should I fertilize my soils with selenium?

No

 Very small amounts needed in dairy rations, use a mineral mix if needed

Why apply sulfur?

• It's no longer free.

National Atmospheric Deposition Program/National Trends Network http://nadp.isws.illinois.edu

Should I apply boron?

- Only in small amounts
 - if soil tests is low apply 2 lb/acre every 3 years

Sandy soils should get 1 lb/acre per year

Boron deficiency in clover

Source: www.aragriculture.org

What about zinc?

- Very little needed,
 - 0.25 lb/acre removed with 5 tons of pasture DM.

A response not likely

Nutrient	Lb/ 5 ton
N	200
Р	70
K	300
Ca	150
Mg	30
S	25
В	0.40
Zn	0.25
Mn	0.60
Cu	0.05
Fe	1.65
Mo	0.01

Should I apply gypsum?

- Good source of S
 - 372 lb S/ton of gypsum (CaSO₄·2H₂O)
- Probably won't improve soil structure
- Will not change pH, not a cure-all

Used primarily to remediate sodic soils out west

Will the Cl in potash poison my soils?

• NO

- Cl is
 - Universal present in soils (about 200 lb/acre)
 - Rapidly leaches from the soil
 - Doesn't not decrease biological activity
- KCl does have a higher salt index than other fertilizers and should not be placed in furrow with corn and soybean seeds

How fast will OM increase in pastures?

- Depends on where you start.
 - Low OM sands and heavily-weathered soils have potential for quicker responses
 - Heavy manured fields and glacial loams probably won't respond very much
- Measured over decades, not a couple of years
- A soil with 1% OM has 20,000 lb or 10 tons of OM.
 - Most OM added to soil (90%) decays quickly to CO2
 - Adding crop residues and manure can help aggregate stability in the short term

But doesn't mob grazing increase soil OM?

- Mob grazing is great way to...
 - Waste valuable feed
 - less than 30% grazed
 - 75% grazed in true rotational system
 - Kill desirable pasture species (too short for regrowth)
 - Increase weed pressure

What about soil health?

Optimal fertility

- Reduce compaction
 - Graze and operate machinery w/o damaging soil
- Smaller organic matter additions can increase aggregate stability in the short term
- Constant living ground cover
 - Well-managed pastures

How about applying....

- Sugar?
- Humic substances?
- Enzymes?
- Mycorrhizal fungi?
- Milk?

Does fertilizer change forage quality?

 Forage quality mostly determined by plant maturity and species selected

Nitrogen fertilizer increases crude protein

Split applications of K to reduce tissue K

No response from micro nutrients

How about liquid fertilizers?

Can work very well

 Still need to put on enough to meet plant requirements

Do nitrogen stabilizers work?

- Some work very well....
 - Agrotain (NBPT)
 - N-Serve (nitrapyrin)
 - Guardian (DCD)
 - Nitroform
 - ESN, Osmocote, and Isobutylidene diurea
- Others not so much
 - Nitri-Sphere
- Nothing "stabilizes" manure nitrogen

Take Home Points

- Optimal Soil pH Maximizes Nutrient Availability
- Set Realistic Yield Goals
- Replace Nutrient Removal by
 - Using Manure
 - Applying Fertilizer When Necessary
- What Does and Does Not Improve Pasture Fertility

Questions?

