Reduced Tillage Fertilizer Management

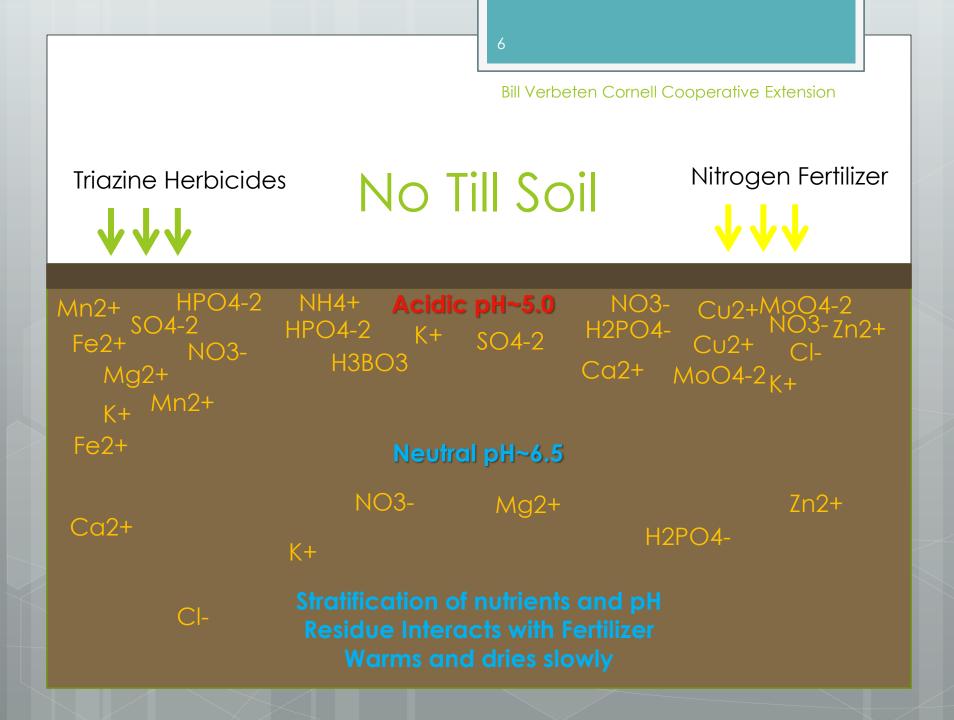

Bill Verbeten NWNY Dairy, Livestock, & Field Crops Team

Take Home Points

- Fertilizer placement is the main tool to manage crop fertility in reduced tillage systems
- Yield responses to fertilizer placement vary with tillage system, soil test levels, nutrient, weather, and soil types.

Bill Verbeten Cornell Cooperative Extension

Conventional Tillage Soil



Bill Verbeten Cornell Cooperative Extension

Conventional Tillage Soil

High Soil Erosion Long term OM decreases Moisture Lost Quickly

Bill Verbeten Cornell Cooperative Extension **No-Till Soil**

Fertility Challenges of No-Till

• Acidic surface pH

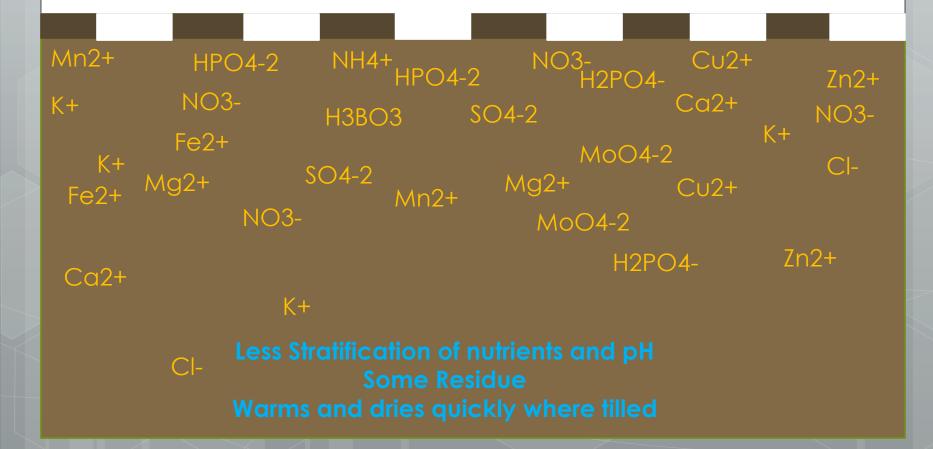
• Nitrogen lost in residue

• Phosphorous and potassium accumulate in the surface and are unavailable when the top 2 in. of soil dries out

Fertility Solutions for No-Till

• Frequent applications of lime (1-2 tons every 1-2 years)

• Apply nitrogen in starter, inject/side-dress


• Phosphorous and potassium should be placed in starter (2 by 2 in.) and/or deep banded (6-10 in.)

Should fertility in reduced tillage systems be managed like no-till or like conventional tillage?

Depends on the tillage system.

Bill Verbeten Cornell Cooperative Extension

Strip & Zone-Till Soils

Nutrient & pH Stratification?

• Not likely where strips and zones are tilled or vertical tillage implements are used

Response to Injecting Nitrogen?

• Yes

Best to inject anhydrous ammonia or UAN solutions

 "Dribbling" UAN solutions has more losses than injecting, but less than broadcasting untreated UAN

Response to Pop-Up Nitrogen?

• Again, **yes**, but need to avoid <u>salt injury</u>

• Limit Pop-Up N + K2O to 10 lb/acre in corn and drilled soybeans (7-8 inch rows)

 15-20 inch soybeans limit N+K2O 5 lb /acre, none for 30 inch soybeans

• Reduce by 50% if on sand or dry conditions

Response to Starter Nitrogen?

• Limit **Starter** N + K2O to 100 lb/acre in corn and 70 lb/acre in 30 inch soybeans

• Limit N to 40 lb/acre in corn & 20 lb/acre in soybeans

Responses to Starter or Deep Banded P?

- In no-till corn and soybeans, responses to low soil test P (Bray-1) regardless of application method (broadcast vs. starter vs. deep banding
- Starter P increases early growth
- Mallarino & Borges, Iowa State University
- However starter P is <u>vital</u> for wheat establishment & yield

How much P in Pop-Up and Starter?

• 20 lb/acre P2O5 in Pop-Ups

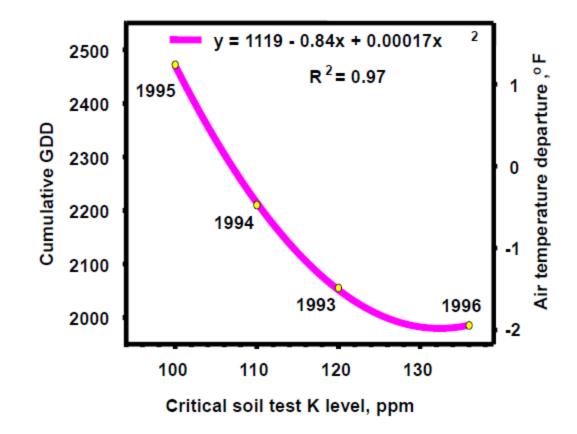
 100 lb/acre P2O5 in Starter
 Often limited by N in MAP & DAP (40 lb/acre N in Corn, 20 lb/acre N in Soybeans)

• High P applications can cause Zn deficiency

Response to Starter or Deep Banding K?

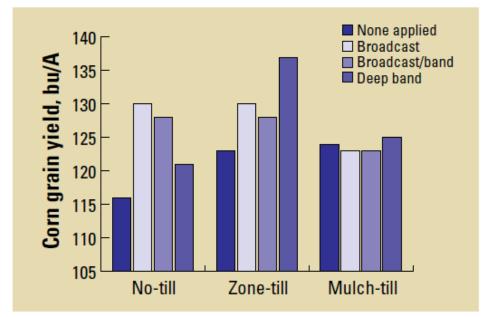
 No-till corn and soybean yields increased with starter and deep banded K, even at optimal to high soil test K.

-Mallarino & Borges, Iowa State University


No Till Corn Response to K Starter

• Colder springs increase responsive soil test level

-Bundy & Andraski, University of Wisconsin.


Bill Verbeten Cornell Cooperative Extension

No-Till Corn Response to Starter K

Bill Verbeten Cornell Cooperative Extension

Corn Response to K in No-Till, Strip Till, & Mulch Till?

Tony Vyn, Ken Janovicek, and Tom Bruulsema, University of Guelph

110 lb/acre K2O

What makes sense for K?

- Responses likely to pop-up & starter K applications in reduced tillage systems.
- Opportunity for deep K placement in zone & strip till
- Response to K fertilization will be greater in cool years

Bill Verbeten Cornell Cooperative Extension

Sulfur response?

Sulfur Recommendations

			Soil Texture				
Sulfur Soil Test	Relative Level	Co Tilled ¹	oarse Strip-till ol no-till		Medium/Fine Strip-till or Tilled no-till		
lb/acre 2 feet		· · · · ·//	o/acre sulfi.	n	commen	ded · · · · ·	
0 - 9	Very low	25	25		25	25	
10 - <mark>1</mark> 9	Low	25	25		15	25	
20 - 29	Medium	15	25		0	15	
30 - 39	High	15	15		0	15	
> = 40	Very high	0	0		0	0	

 Most crops will still respond to between
 10 and 25
 Ib/acre of sulfur regardless of tillage systems.

¹ Conventional tillage

South Dakota State Fertility Guide 2005

Micro-Nutrients in Reduced Tillage?

- Micro-nutrient application most responsive to
 - Low OM, sandy soils
 - Dry years
 - pH extremes (i.e. not 6.0-7.0)
 - Extremely high OM soils
 - No manure application

Increases in OM and Organic Nitrogen in Reduce Tillage?

• Long-term investment

• 1% OM = 10 tons of OM in the plow layer

• Most residue (80-90%) is oxidized to CO2 within 2 years

Increases in OM and Organic Nitrogen in Reduced Tillage?

• Work in NY has shown that:

• No OM addition decreases OM

• Adding manure maintains OM

• Adding 15-30 tons/acre of compost per year increase OM by 0.5% in 5 years

Take Home Points

- Fertilizer placement is the main tool to manage crop fertility in reduced tillage systems
- Yield responses to fertilizer placement vary with tillage system, soil test levels, nutrient, weather, and soil types.

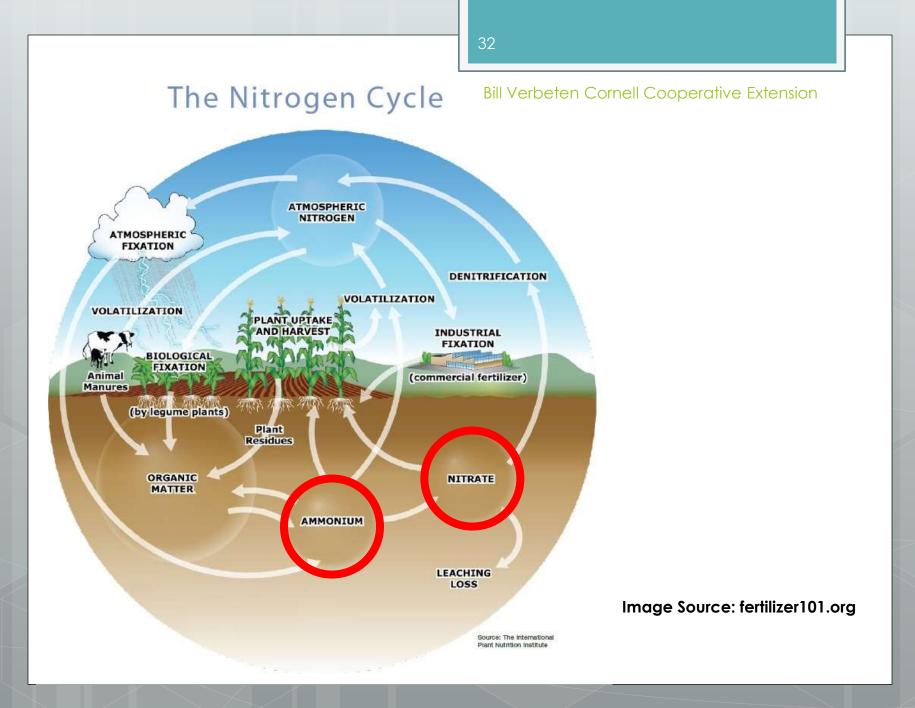
Questions?

Nitrogen Stabilizers

Bill Verbeten NWNY Dairy, Livestock, & Field Crops Team

Take Home Points

- Nitrogen stabilizers act as **nitrification inhibitors, urease inhibitors,** or **slow release fertilizers.**
- Nitrogen stabilizers **reduce nitrogen losses** for <u>varying amounts</u> of time (10 days to 10 weeks)

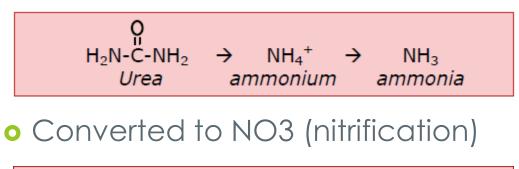

Bill Verbeten Cornell Cooperative Extension

30

Nutrient Uptake Forms-N

• Crops take up

- Mostly Nitrate, NO3 -
- Some Ammonium NH4 +



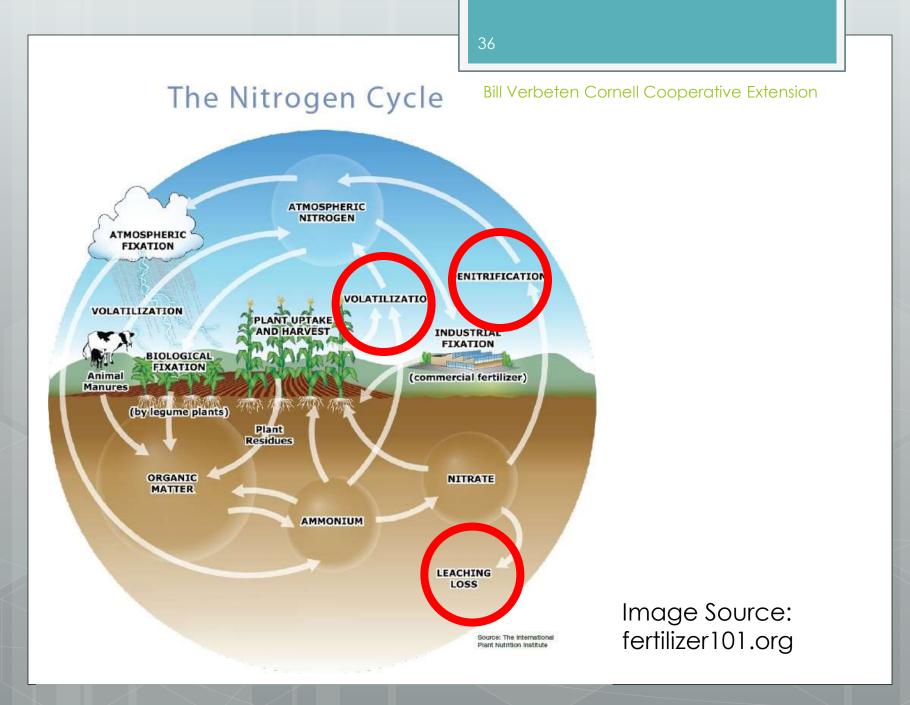
• NH4+

- Anhydrous NH3
- Urea Ammonium Nitrate (UAN)
- Ammonium Sulfate (AMS)
- o Urea

- Monoammonium phopshate (MAP)
- Diammonium phosphate (DAP)
- NO3-
 - Calcium nitrate
 - Potassium nitrate
 - Sodium nitrate

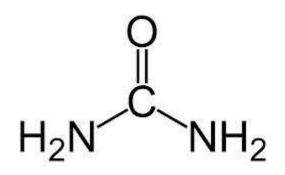
NH4+ fertilizers can be...
Lost through NH3 volatilization

NH_4^+	\rightarrow	NO ₂ ⁻	\rightarrow	NO ₃ ⁻	
ammonium		nitrite		nitrate	

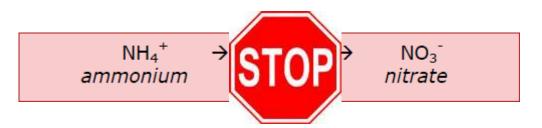

Bill Verbeten Cornell Cooperative Extension

34

• NO3- fertilizers can be...

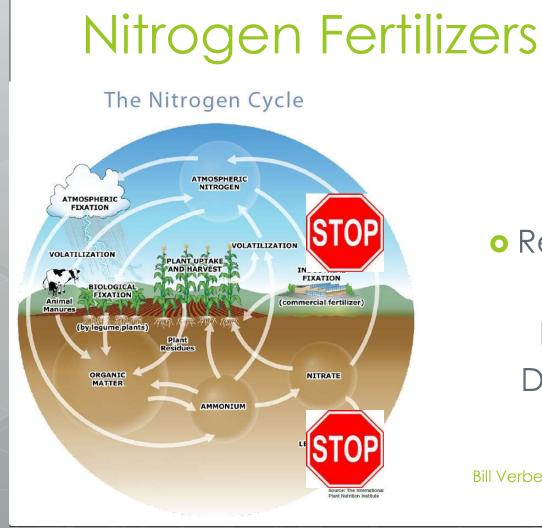

• Lost through denitrification

• Lost through leaching from root zone


• Urea fertilizers

- Also lost through NH3 volatilization
- And converted to NO3

Nitrification Inhibitors


Inhibits Nitrosomonas bacteria
Reduces losses for 4-10 weeks

N-Serve & Instinct (Dow AgroSciences) nitrapyrin
Guardian (Conklin) dicyandiamide, DCD

Bill Verbeten Cornell Cooperative Extension

38

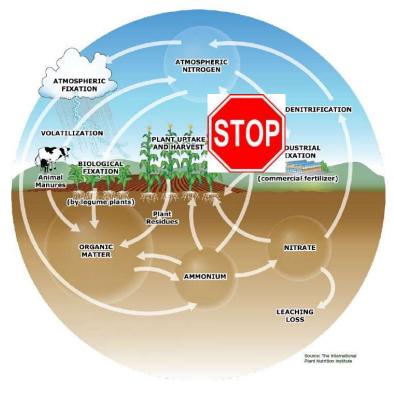
Nitrification Inhibitors

 Reduce N losses from Leaching & Denitrification

Bill Verbeten Cornell Cooperative Extension

-39

Bill Verbeten Cornell Cooperative Extension


Nitrogen Fertilizers

o Urease Inhibitors

• Agrotain (Agrotain International LLC)

N-butyl thiophosphoric triamide, **NBPT**

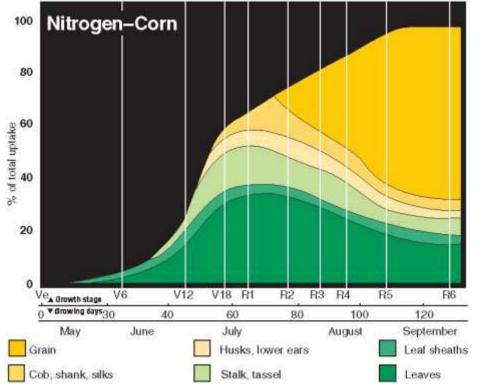
The Nitrogen Cycle

40

• Slow release

• Microbes break down protective layer

• Sulfur coated urea, **ESN**, (Agrium)


• Osmocote (Scotts)

• Isobutylidene diurea, **IBDU**, (Nu-Gro)

Nitrogen

~

Nitrogen Uptake

Take Home Points

- Nitrogen stabilizers act as **nitrification inhibitors, urease inhibitors,** or **slow release fertilizers.**
- Nitrogen stabilizers reduce nitrogen losses for <u>varying amounts</u> of time (10 days to 10 weeks)

Questions?