A Potpourri of Glyphosate, Micronutrients, and Adjuvants

Mark Bernards Extension Weed Specialist

Outline

- All the fuss about micronutrients
- What is yellow flash?
- Soybean response to manganese
- Glyphosate application with micronutrients
- Water conditioners and AMS dose
- Comments on glyphosate side-effects

Micronutrients in the media

Q

weedscience.unl.edu

Don Huber's Arguments

- **Glyphosate:**
 - Changes soil microflora
 - Chelates micronutrients in the soil
 - Inhibits plant enzymes that regulate micronutrient uptake
 - Immobilizes Mn in plant tissues treated with glyphosate
- The glyphosate resistant gene reduces Mn efficiency

Micronutrient application will address these effects.

Micronutrients and Yield Maximization

- Projected need to double food supply by 2050.
- Industry targets to double corn and soybean yield in US from 2000 level.

• Will greater micronutrient use be necessary to reach yield potentials?

Yellow flash in soybean

- Chlorosis of newly emerging soybean leaves following application of glyphosate
- Conditions
 - Rapid soybean growth
 - Warm and moist
 - Sprayer overlaps
 - Areas prone to micronutrient deficiency

Mechanism of Glyphosate-Resistance

- Identified gene from microbial source with an EPSP synthase enzyme that was insensitive to glyphosate
- Inserted gene encoding insensitive EPSP synthase into soybean
- GMO soybean has two copies of the EPSP synthase gene
 - -1 native (susceptible to glyphosate)
 - → 1 introduced (insensitive to glyphosate)

Yellow Flash in Soybean

- Myth: glyphosate temporarily chelates manganese and reduces chlorophyll production
- Fact 1: One application of glyphosate temporarily reduced chlorophyll content in newly emerging soybean leaves compared to untreated control (Abendroth et al. 2005).
- Fact 2: Chlorosis in soybean was caused by application of AMPA, a glyphosate degradation product (Reddy et al. 2004).

Glyphosate breakdown to AMPA

Table 2. Effect of Glyphosate-isopropylammonium (Glyphosate-Ipa) Treatment at 6.72 kg/ha on Glyphosate, Shikimate, and Aminomethylphosphonic Acid (AMPA) Concentration in Treated and New Leaves of Glyphosate-Resistant Soybean over Time^a

		treated leaves ^b		new leaves ^c			
treatment ^d	time after treatment, days	glyphosate, μ g/g of tissue	shikimate, ng/g of tissue	AMPA, µg/g of tissue	glyphosate, µg/g of tissue	shikimate, ng/g of tissue	AMPA, μ g/g of tissue
Tween 20 only	1	0 f	139 a	0.e			
glyphosate-ipa	1	527 a	131 a	42 a			
glyphosate-ipa	3	336 b	146 a	19 b			
glyphosate-ipa	5	167 c	135 a	10 c			
glyphosate-ipa	1	149 c	141 a	8 cd	239 a	126 a	42 a
glyphosate-ipa	14	99 d	167 a	3 de	121 b	147 a	21 b
glyphosate-ipa	22	37 e	147 a	1 e	3 c	148 a	1 c
Tween 20 only	22				ÛC	121 a	ÛC

^b Means within a column followed by the same letter are not significantly different at the 5% level as determined by Fisher's protected LSD test. ^b Treated leaves included first pair, and first, second, and third trifoliolate leaves. ^c New leaves included fourth trifoliolate leaf and above. ^d Tween 20 at 0.5% (v/v) was added to all treatment solutions.

Reddy et al. 2005

AMPA effect on chlorophyll content

Table 3. Effect of Aminomethylphosphonic Acid (AMPA) Treatment on Chlorophyll Content 4 Days after Treatment and Shoot Fresh Weight 14 Days after Treatment of Glyphosate-Resistant (GR) and Non-GR Soybean^a

		chlorophyll, % of control		shoot fresh wt, % of control	
AMPA rate, ^b	GR	non-GR	GR	non-GR	
kg/ha	soybean	soybean	soybean	soybean	
untreated control	100 a	100 a	100 a	100 a	
Tween 20	86 b	83 ab	98 a	93 ab	
0.12	72 c	84 ab	96 ab	93 ab	
0.25	58 d	82 bc	91 bc	90 bc	
0.50	59 d	66 c	90 cd	91 bc	
1.00	50 de	41 d	88 cd	85 c	
2.00	40 ef	36 d	86 d	84 c	
4.00	40 ef	41 d	74 e	66 d	
8.00	34 f	31 d	61 f	51 e	

^a Means within a column followed by the same letter are not significantly different at the 5% level as determined by Fisher's protected LSD test. ^b Tween 20 at 0.5% (v/v) was added to spray solutions in all treatments except untreated control.

Reddy et al. 2005

Mn deficiency in soybean

- Where common?
 - → Eastern Soybean Belt
 - → High pH and/or high O.M. soils
- Interveinal chlorosis
- Deficiency symptoms often appear near time of postemergence herbicide applications
- Foliar and banded applications of Mn fertilizers are effective at alleviating symptoms

Soybean response to Mn in Nebraska

Hypotheses

- On Mn-sufficient silt-loam or silty-clay loam soils in NE:
- GR and non-GR soybean varieties will respond similarly to foliar application of Mn
- Application of glyphosate will not affect GR soybean response to Mn

Methods

Field studies in 2007 and 2008

- South Central Agricultural Laboratory (Clay Center, NE)
 - Irrigated
 - Hastings silt loam, 2.5% O.M. and pH 6.5
 - Soil Mn, 7.3-11.2 ppm
- → Lincoln Agronomy Farm (Lincoln, NE)
 - Rainfed
 - Sharpsburg silty clay loam, 3.1% O.M. and pH 6.7

Variety response

- Mainplot varieties
 - → 4 GR
 - → 4 non-GR
- Subplot Mn
 - → 0 lbs Mn

- → 1 lb Mn (0.33 lb Mn/A applied at V4, V8, and R2)
- 4 replications
- Soybeans were planted mid-May
- 150,000 seeds/A
- 30 in row spacing

Glyphosate-resistant gene and yield

Variety and Mn effect - Yield

Effect	P value	Site Years
Variety	<0.01	4
Mn	<0.05	2
Variety x Mn	n.s.	-

weedscience.unl.edu

Variety response – SCAL 2007

* p<0.05, within variety response to Mn only 2 times in 4 site years

weedscience.unl.edu

Glyphosate application effect on yield

- 4 varieties
- Glyphosate
 - No glyphosate
 - Glyphosate at 0.75 lb ae/A applied at V6
- Mn
 - No Mn
 - Mn at 0.33 lb/A at
 V4, V8, and R2

Effect	P value	Site Years
Variety	<0.01	4
Mn	<0.01	1
Glyphosate	<0.05	2
Variety x Glyphosate	<0.05	3
Mn x Glyphosate	n.s.	-
Variety x Mn	<0.01	1
Var x Mn x Gly	n.s.	-

Variety x Glyphosate interaction

Mn x Variety – Lincoln 2007

weedscience.unl.edu

Mn x Glyphosate interaction

Conclusions from NE study

- No consistent response to Mn fertilizer between glyphosate-resistant and nonglyphosate resistant soybean
- No consistent response to Mn application within varieties
- No consistent response to glyphosate application within varieties
- No interaction between glyphosate and Mn applications

Soybean response to Mn - Indiana

- Differential response between a GR and non-GR soybean on Mn-marginal soil in Indiana (Dodds et al. 2001)
 - → Lower tissue Mn in GR soybean
- Chlorosis ratings and tissue Mn concentrations varied among several GR and non-GR soybean varieties (Dodds et al. 2002)
- In was not translocated when applied with or shortly after glyphosate (less than 7 days) (Huber et al. 2004)
- Neither IL nor IN reported problems with plants use of Mn after glyphosate appl. (Bernick 2010)

Soybean response to Mn - Kansas

- Yield of a GR-soybean increased with Mn application, but yield of non-GR isoline did not change in Northeast Kansas (Gordon 2007).
- Leaf tissue Mn concentration of GR-isoline was 60% less than of non-GR isoline in absence of Mn application (Gordon 2007)
- No difference in response to Mn application between GR and non-GR isolines in 3rd year of study (Gordon 2008)
- Yield response to Mn among GR and non-GR varieties was inconsistent at 5 locations and 2 years across Kansas (Nelson 2008)

Soybean response to Mn - Ontario

- No yield benefit with Mn application (tested across several Mn formulations)
- Some Mn treatments resulted in a 10-15% yield reduction
 - Some due to plant injury from micronutrient application
- All but 2 Mn formulations reduced glyphosate activity (Soltani et al. 2011)

Table 1. Chlorophyll level and grain yield as affected by Mn fertilizer applied in glyphosate tank-mixtures to glyphosate-resistant soybean.

Mn treatment	Mn rate	SPAD-502 reading	Yield
	-lb/A-	11 DAT	-bu/A-
no Mn	0.0	25.9 b	33 b
MnSO ₄	2.5	37.1 a	57 a
Untreated	0.0	23.9 b	24 b

Mn antagonism in the field

Common lambsquarters control 28 DAT with glyphosate-AMS-Mn fertilizer tank-mixtures in soybean in 2001 and 2002. Glyphosate was applied at 0.5 lb ae/A.

weedscience.unl.edu

Tank-mixing Micronutrient Fertilizers and Glyphosate

Glyphosate as chelate

Glyphosate forms complexes with di- and tri-valent metal cations

Antagonism of herbicide efficacy occurs when adding a product to the spray solution causes a reduction in weed control.

weedscience.unl.edu

Antagonistic Cations

Glyphosate

Glyphosate + FeSO₄ Cations antagonistic to glyphosate activity:

 $\begin{array}{c} \text{AI}^{3+} \\ \text{Fe}^{3+} \\ \text{Ca}^{2+} \\ \text{Mn}^{2+} \\ \text{Zn}^{2+} \\ \text{Mg}^{2+} \\ \text{Cu}^{2+} \\ \text{Na}^{+} \\ \text{K}^{+} \end{array}$

weedscience.unl.edu

Glyphosate efficacy and di-/tri-valent cations

Reduced absorption
Reduced translocation
Reduced control

Nalewaja and Matysiak, 1992

Water conditioners and adjuvants

- Water conditioners
 - ammonium sulfate (AMS)
 - EDTA
 - Citric acid
 - NTANK (NT)
 - N-Tense
 - CLASS ACT Next Generation (CANG)
 - Surfate
 - ReQuest
 - Choice
 - Bronc Max, etc.

- Fertilizer adjuvants
 - EDTA
 - HEDTA
 - Citric acid
 - Lignin sulfonates
 - Flavonols
 - Mannitol
 - iminodisuccinic acid
 - glucoheptonate

AMS - Mode of Action

Objectives

- 1. Quantify the antagonism caused by various formulations of B, Cu, Fe, Mn, Zn, and micronutrient mixtures, on glyphosate efficacy.
- 2. Determine if the water conditioners AMS, CANG, and NT, can prevent antagonism from occurring.

Materials and Methods

- Greenhouse bioassays
 - Velvetleaf (Abutilon theophrasti)
 - → Giant foxtail (Setaria faberi)
- Isopropylamine salt of glyphosate > 0.25 lb ae/A
- Single-tip track sprayer
- Spray volume: 10 gal/A
- Spray pressure: 25 psi
- All solutions were prepared in distilled water

Materials and Methods

Micronutrient formulations (except Boron)

- → sulfate salt
- 🛏 ammonium citrate salt
- → EDTA or HEDTA chelate
- micronutrient charged catalyst flavonol
- lignosulfonic acid chelate (LSA)
- Water conditioner adjuvants
 - → 2% AMS (w/w)
 - → 2.5% CANG (CLASS ACT[®] Next Generation) (v/v)
 - → 1.0% NT (NTANK[™]) (v/v)

Materials and Methods

Micronutrient application rates

- → Boron, 0.25 lb/A (Boric acid and sodium borate)
- → Copper, 0.45 lb/A
- → Iron, 0.4 lb/A
- → Manganese, 1.0 lb/A
- → Zn, 0.5 lb/A
- Micronutrient mixtures
 - → Chelated by EDTA and citric acid (MC)
 - → not chelated (MS)
 - → in Ib/A: N 0.32, S 0.16, B 0.02, Fe 0.05, Mn 0.16, Zn - 0.11

Velvetleaf, 21 DAT, Bernards et al. 2004

Micronutrient concentration in the tank-mixture

Spray volume

Fertilizer rate	Analysis	Micronutrient rate	10 gal/A	20 gal/A
			Nutrien	t, mg/L
4 gal/A	5% X	2 lb/A	24,000	12,000
2 gal/A	5% X	1 lb/A	12,000	6,000
1 gal/A	5% X	0.5 lb/A	6,000	3,000
0.5 gal/A	5% X	0.25 lb/A	3,000	1,500
0.25 gal/A	5% X	0.125 lb/A	1,500	750
0.25 gal/A	1% X	0.025 lb/A	300	150

Boron (0.25 lb/A)

Table 1. Control of giant foxtail with glyphosate (0.25 lb/A) + boron tank-mixtures, 14 DAT.

	Water conditioner adjuvant in tank-mixture ^a				
Boron salt	None	NT			
	Control, %				
None	100 a	99 a	100 a		
Boric acid (HB)	93 a	99 a	100 a		
Sodium borate (NaB)	88 a	100 a	78 b		

Boron (0.25 lb/A)

FIG. 1 - Velvetleaf control, 14 DAT.

'HB' - Boric acid 'NaB' - Sodium borate

Copper (0.45 lb Cu/A)

Table 2. Control of giant foxtail with glyphosate (0.25 lb/A) + copper (Cu) tank-mixtures.

	Water conditioner adjuvant in tank-mixture ^a			
Cu formulation	None	AMS	CANG	NT
		Con	trol, %	
None	96 a	99 a	94 a	99 a
Cu sulfate	56 de	67 bc	64 b	89 abc
Cu citrate	63 cd	68 bc	74 b	83 c
Cu EDTA	66 c	74 b	92 a	87 bc
Cu flavonol	80 b	91 a	94 a	94 ab
Cu LSA	46 e	61 c	64 b	94 ab

Copper (0.45 lb/A)

Cu sulfate: most antagonistic

Cu EDTA: least antagonistic

Tank-mixed with

Cu fertilizer:

Copper (0.45 lb/A)

Table 3. Control of velvetleaf with glyphosate (0.25 lb/A) + copper (Cu) tank-mixtures.

	Water conditioner adjuvant in tank-mixture ^a				
Cu formulation	None	AMS	CANG	NT	
		Cor	ntrol, %		
None	78 a	90 a	71 a	91 a	
Cu sulfate	19 d	53 c	29 e	68 cd	
Cu citrate	41 c	56 c	49 d	61 d	
Cu EDTA	57 b	67 b	66 ab	77 b	
Cu flavonol	44 c	64 b	63 bc	71 bc	
Cu LSA	41 c	56 c	58 c	69 c	

Iron (0.4 lb Fe/A)

Table 4. *Control of giant foxtail with glyphosate + Fe tankmixtures.*

	Water conditioner adjuvant in tank-mixture ^a			
Fe formulation	None	AMS	CANG	NT
	Control, %			
None	99 a	95 a	98 a	98 a
Fe sulfate	8 d	28 c	16 c	64 c
Fe citrate	21 c	28 c	16 c	53 d
Fe EDTA	68 b	71 b	61 b	79 b
Fe flavonol	69 b	73 b	66 b	81 b

Iron (0.4 lb/A)

FIG. 4 - Velvetleaf control, 14 DAT.

Iron + glyphosate + AMS.

FIG. 5 – Control of velvetleaf, 14 DAT

Iron (0.4 lb Fe/A)

Table 5. Control of velvetleaf with glyphosate + Fe tank-mixtures.

	Water conditioner adjuvant in tank-mixture ^a				
Fe formulation	None	AMS	CANG	NT	
		Control, %			
None	40 a	55 a	55 a	69 a	
Fe sulfate	0 b	3 cd	0 c	4 bc	
Fe citrate	0 b	0 d	3 c	0 c	
Fe EDTA	5 b	11 bc	9 c	6 bc	
Fe flavonol	1 b	19 b	23 b	11 b	

Manganese (1 lb/A)

Table 6. Control of giant foxtail with glyphosate (0.28 kg/ha) + manganese (Mn) tank-mixtures.

	Water conditioner adjuvant in tank-mixture ^a			
Mn formulation	None	AMS	CANG	NT
	Control, %			
None	98 a	96 a	99 a	99 a
Mn sulfate	53 d	88 ab	70 c	91 a
Mn citrate	69 c	81 b	74 bc	95 a
Mn EDTA	83 b	93 a	82 b	94 a
Mn flavonol	91 ab	97 a	93 a	97 a
Mn LSA	44 d	71 c	58 d	74 b

Mn (1 lb/A)

No adjuvant

With NT

weedscience.unl.edu ... www.weedsoft.org

citrate

Manganese (1 lb/A)

Table 7. Control of velvetleaf with glyphosate (0.28 kg/ha) +manganese (Mn) tank-mixtures.

	Water conditioner adjuvant in tank-mixture ^a				
Mn formulation	None	AMS	CANG	NT	
	Control, %				
None	68 a	79 a	74 a	84 a	
Mn sulfate	9 d	50 bc	22 c	74 ab	
Mn citrate	40 c	70 a	53 b	81 a	
Mn EDTA	64 ab	56 b	62 b	69 bc	
Mn flavonol	57 b	55 b	61 b	61 c	
Mn LSA	10 d	41 c	24 c	67 bc	

Zinc (0.5 lb/A)

Table 8. Control of giant foxtail with glyphosate (0.28 kg/ha) + zinc (Zn) tank-mixtures.

	Water conditioner adjuvant in tank-mixture ^a			
Zn formulation	None	AMS	CANG	NT
		Con	trol, %	
None	99 a	97 a	98 a	99 a
Zn sulfate	38 d	51 d	30 c	84 b
Zn citrate	53 c	86 ab	66 b	81 b
Zn EDTA	59 c	69 c	73 b	83 b
Zn flavonol	81 b	76 bc	88 a	91 ab
Zn LSA	14 e	46 d	23 c	81 b

Zinc

Zinc (0.5 lb/A)

Table 9. Control of velvetleaf with glyphosate + Zn tank-mixtures.

	Water conditioner adjuvant in tank-mixture ^a			
Zn formulation	None	AMS	CANG	NT
		Cor	itrol, %	
None	66 a	78 a	70 a	76 a
Zn sulfate	20 c	40 c	1 d	54 b
Zn citrate	24 c	59 b	53 b	61 b
Zn EDTA	47 b	62 b	62 b	57 b
Zn flavonol	48 b	59 b	54 b	60 b
Zn LSA	5 d	54 b	13 c	58 b

Giant foxtail control with micronutrient mixtures

Velvetleaf control with micronutrient mixtures

Summary - Micronutrient formulations

- Most Cu, Fe, Mn, and Zn formulations antagonized glyphosate on giant foxtail and velvetleaf
 - The EDTA, HEDTA, or flavonol formulations were the least antagonistic
 - The sulfate salt or lignosulfonic acid formulations were the most antagonistic
- Tank-mixtures containing NT overcame the antagonism more often than those containing AMS or CANG.
- Boron salts can also antagonize glyphosate efficacy

Summary - Micronutrient mixtures

- Antagonistic effect of multiple micronutrients in tank-mixture is at least additive
- Increasing the glyphosate rate may overcome antagonism, but may also be cost-prohibitive on some species
- Adding AMS or NT increased velvetleaf control for MC and MS tank-mixtures, but neither overcame the antagonism

Tank-mixing glyphosate and micros

<u>Efficient Solution</u>

- Nutrient deficiency
- Non-antagonistic fertilizer formulation
- Highest labeled rate of glyphosate
- Effective water conditioner
- Warm and humid

Potential Problem

- No nutrient deficiency
- Antagonistic fertilizer formulation
- Reduced glyphosate rate
- No water conditioner
- Large weeds, droughty conditions

More recent work on micronutrients

- Penner et al. (2010, NCWSS)
 - All micronutrient fertilizers antagonized glyphosate
 - Some minor differences in water conditioners but do not completely overcome the antagonism

Water conditioner variability

AMS Rate Matters

Evaluate commercial "water conditioners" in proposed test method to define water conditioners

Methods and Materials

 Glyphosate (0.28 lb ae/A)
ipa salt, 3 lb ae/gallon, 41% w/w, low load
GPA 10
Nozzles TT Jet 11001
Pressure 40 psi
Water Distilled 1000 ppm hard water

Methods and Materials

Species:

- NE = **Vele**, wahe, fxtl.
- KS = **Vele**, ilmg, sorg, bygr, and corn.
- IL = Vele, ilmg, wahe, fxtl.
- MN = **Vele**, soy, cocb, bygr, and fxtl.
- ND = Flax, amar, tabw, and corn.
- Size at appl: 4 to 24 inches
- Replications: 4
- Evaluated: 14 and 28 DAT

Treatments

- Glyphosate distilled water (DW)
- Glyphosate hard water (HW)
- Glyphosate + AMS (DW)
- Glyphosate + AMS (HW)
- Glyphosate + 10 water conditioners at rec. rates (HW)
- All treatments applied:

(-) (+) MON 0818 surfactant @ 0.25% v/v

Water Conditioner adjuvants

- Request = Water conditioner (WC) (0.5% v/v)
- Helfire = Acidic WC (0.5% v/v)
- Solution > N-Tense = WC + NIS (0.5% v/v)
- Array = AMS + Deposition + Defoamer (9 lb/100 gal)
- Solution Bronc Max = AMS + WC (0.5% v/v)
- Choice Weather Master = AMS + WC (0.5% v/v)
- Cayuse Plus = AMS + NIS (0.5% v/v)
- Class Act NG = AMS + NIS (2.5% v/v)
- Bronc Plus Dry EDT = AMS + NIS (10 lb/100 gal)
- Flame = AMS + NIS (0.5% v/v)

Adjuvant Identity Protection Program

Water conditioner

Water conditioner effectiveness

Average of 5 locations, 2010

Broadleaf species, 5 locations, 1000 ppm

Grass species, 5 locations, 1000 ppm

Response to NIS

AMS Rate Matters

AMS rate in water conditioners

- Approximate load 3.75 lb AMS/gal
- Typical use rate
 - →0.5% v/v
- AMS in tank

- (0.5 gal/100 gal)*(3.75 lb/gal) =

⇒ 1.88 lb AMS/100 gal = 0.2% (w/v)

AMS Rate Matters

Observations

- Water conditioner products vary widely in their effectiveness
- Rates are often too low for extremely hard water scenarios
 - → 1000 ppm
 - Dry rates, minimum 8.5 lb/100 gal
 - Liquid rates, minimum 2.5% v/v
- Rates may be adequate if water quality is good

Precipitation delayed herbicide applications

http://images.publicradio.org/content/2008/06/18/20080618_flooded_field_33.jpg

Why growth stage restrictions?

- To not exceed allowable pesticide residues
- 2. To avoid crop injury
- To guarantee good weed control
 - a. Weeds too large
 - b. Canopy too dense

http://hoegys.ca/cms/files/image/1195.jpg

What is the maximum height for a broadcast application of glyphosate in RR2 corn?

Gyphosate use in corn

- Restrictions differ among glyphosate labels
- Drop nozzles recommended above 24"
- No applications allowed beyond 30" in RR corn
- Drop nozzles required above 30" (V8) in RR2
- No applications allowed beyond 48" in RR2
- Maximum in-crop applications totaled less than 64 fl oz K-salt or 96 fl oz IPA-salt

http://t3.gstatic.com/images?q=tbn:ANd9GcQ45rvbLNBG0VEcwYBTs5gF-nkGhxl3jFs9xmgh8M01yJc59rd1sw

Glyphosate use in soybean

- Emergence through flowering (R2) stage
- Maximum weed height of 8 inches with a 22 fl oz/A application rate
- Maximum single use rate in crop:

→44 fl oz/A

Maximum season-long in-crop use:

→64 fl oz/A

Drop nozzle spacing matters!

20" centers

V12 corn

Where does the pesticide go?

- Translocated herbicides
 - Moves to the sink
 - Ear
 - Tassel
- Contact herbicide
 - Most stays in treated leaf

Arrested ears - NIS

Irregular rows - glyphosate

http://www.kingcorn.org/news/articles.08/ArrestedEars-1209.html

% abnormal ears caused by late appl.

% Kernel number as affected by late application

Late herbicide application – glyphosate + Cadet

Late herbicide application - Ignite

Glyphosate effects on corn pollen

Non-treated

Glyphosate applications at V8 or later reduced pollen viability 40%

> Glyphosate applied at V10

Thomas et al. 2004. Weed Sci 52:275

At what corn growth stage do newly emerging weeds no longer reduce yield:

- 1. V2
- 2. V5
- 3. V8
- 4. V11
- 5. Tasseling

When do newly emerging weeds no longer reduce yield in corn?

- It depends!
 - Weed species
 - Sunflower vs. foxtail
 - Density
 - High vs low
 - Fertility
 - Moisture

- Range of growth stages from research
 - Earliest: V2
 - Latest: R1 Silking
 - Average: V10

Summary

- Yellow flash is temporary toxicity caused by glyphosate degradation product
- In applied to soybean should be targeted to locations with measurable deficiency
- Tank-mixing glyphosate and micronutrients compromises glyphosate activity
- AMS products vary, but most important factor is AMS rate in tank
- Late applications of glyphosate can impact corn ear development

Questions?

Thank you!

