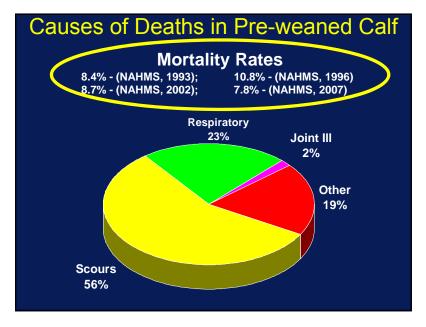
Improving Health and Survival of Newborn Dairy Calves

Franklyn Garry



Heifer raising

- Number of animals
- Second largest dairy expense
- Profitability determinants
 - Rate of gain
 - Age at calving
 - Weight at calving

Food for Thought

 Despite the importance of calf health, and the high incidence of calf disease and death, this area receives limited attention from producers and veterinarians

Neonatal Calf Losses

- Death < 2 days old</p>
 - Typically non-infectious
 - Associated with physiological derangements
 Birthing trauma, difficult postnatal adaptation, etc.
- ◆ Death ≥ 3 days old
 - Likely infectious in nature
- Potential physiologic problems that don't kill may predispose to infectious problems

Adaptation to extrauterine life

- Tremendous physiologic transition
- Numerous influences
- Not always successful

Neonatal adaptation

Organ system changes

- Respiratory
- Cardiovascular
- Metabolic
- Fluid balance
- Thermoregulation
- Musculo-skeletal
- Neurologic

Blood oxygenation Oxygen delivery

- Pulmonary (Lung) blood flow
- Ventilation
 - Iung expansion
 - Iung fluid
- Physical/muscular activity
- Blood volume oxygen delivery

Fluid volume and balance

- 'Swimming pool' environment
- Normal tissue hydration
- Blood volume contraction
- Need fluid supplementation to maintain circulatory volume

Blood gas and Acid/Base in Newborn Calves

Time of Sampling										
Variable	Blood	At Birth	30 Minutes	4 hours	12 Hours	24 Hours	P	P		
рН	Arterial	7.30 (0.06)	7.36 (0.04)	7.38 (0.03)	7.42 (0.03)	7.43 (0.04)	<0.501	>0.05		
	Venous	7.24 (0.09)	7.30 (0.04)	7.33 (0.03)	7.38 (0.04)	7.40 (0.06)	< 0.001			
Pco ₂ (mm Hg)	Arterial	57.31 (4.98)	52.58 (5.00)	48.70 (3.73)	43.71 (4.75)	44.22 (4.32)	<0.001	<0.00		
	Venous	67.34 (10.39)	28.23 (0.43)	34.30 (0.10)	47.03 (5./5)	46.67 (6.24)	< 0.001			
Po ₂ (mm Hg)	Arterial	45.31 (16.02)	58.08 (13.12)	67.66 (14.55)	71.89 (8.32)	66.77 (14.21)	<0.001	⊲0.05		
	Venous	20.94 (5.30)	27.95 (5.42)	29.15 (4.41)	29.33 (5.52)	27.62 (3.04)	< 0.001			
Hco ⁻ 3 (mmol/l)	Arterial	26.76 (3.39)	28.01 (2.44)	27.40 (2.32)	26.96 (2.94)	28.31 (3.26)	>0.05	>0.05		
	Venous	27.24 (3.70)	27.48 (3.81)	27.42 (3.18)	26.42 (2.82)	27.87 (3.35)	>0.05			
Base excess (mmol/L)	Arterial	0.86 (4.12)	2.9 (2.88)	2.52 (2.64)	2.78 (3.23)	4.42 (3.59)	>0.05	>0.05		
	Venous	1.01 (3.49)	1.53 (4.37)	1.89 (3.48)	1.59 (3.08)	3.40 (3.92)	>0.05			
So ₂ (%)	Arterial	64.16 (20.82)	82.08 (9.98)	89.23 (6.84)	92.84 (2.32)	89.75 (8.31)	<0.001	>0.05		
	Venous	22.64 (10.00)	39.26 (10.98)	44.19 (9.39)	47.41 (12.06)	47.81 (15.41)	< 0.001			

bbreviations: Hco'a, bicarbonate; Pco2, partial pressure of carbon dioxide; Po2, partial pressure of oxygen; So2, oxygen saturation. ^ Analysis of variance for repeated measures within groups.

Analysis of variance for repeated measures between groups.

Data from Bleul U, Lejeune B, Schwantag S, et al. Blood gas and acid-base analysis of arterial blood in 57 newborn calves. Vet Record 2007;161:688-91.

Poulsen KP., McGuirk SM. Vet Clin Food Anim 25 (2009)

Thermogenesis = Body heat generation

Non-shiveringShiveringPhysical activity

Failure to adapt adequately may not be obvious

- Adaptive processes interrelated
- Disturbances usually multiple
- Onset of problems may be delayed
- Problems usually subtle, nonspecific

Consequences of poor adaptation

- Decreased activity, lethargy
- Low blood oxygen
- Heat loss, low body temperature
- Delayed intake of colostrum
 - decreased energy/ nutrient intake
 - decreased fluid volume
 - decreased Ig consumption
- Decreased disease resistance

Abnormal Neonatal Adaptation

Dystocia Premature birth Illness in dam In-utero problems

Dystocia

- Defined as delayed or difficult parturition
 - Fetal-maternal size mismatch
 - Fetal malpresentation
 - Maternal causes
- Dystocia increases the degree of neonatal asphyxia and makes it harder for calves to adapt successfully

Food for Thought

- Dystocia is NOT perceived to be a major problem on Dairies, although it occurs at remarkably high rates.
- Non-infectious disease conditions of dairy calves, associated with dystocia, account for 1/3 to 1/2 of calf losses, but these losses are almost ignored.

Heifer and Cow Calving Difficulty									
Calving Difficulty	Percent Heifers ¹	Std. Error	Percent Cows ²	Std. Error					
Severe dystocia (surgical or mechanical extraction)	6.8	(0.7)	3.5	(0.3)					
Mild dystocia	11.8	(0.8)	7.3	(0.5)					
No dystocia, but assistance provided anyway	12.4	(1.0)	9,8	(0.9)					
No assistance	69.0	(1.4)	79.4	(1.3)					
Total ¹ As a percentage of dairy cow rep	100.0		100.0						

'As a percentage of dairy cow replacements entering the milking herd in 2006.
'As a percentage of cows on the operation at the time of VS Initial Visit interview.

2009. USDA:APHIS:VS:CEAH. Dairy 2007, Calf Health and Management Practices on U.S. Dairy Operations

Dystocia Prevalence Estimates

- ♦ Heifers 28.6% → 48.8%
- ◆Cows 10.7% → 29.4%
- Overall 20-40%
- Dystocia is under-estimated and very common problem on dairy operations and has lasting effects

Stillbirths

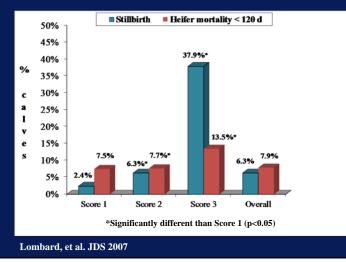
- Calf delivered dead or dies w/in 48hrs
- Often not monitored/tracked on dairies
- Some genetic effects
- Some infectious issues Coxiella, Neospora, Campylobacter, Leptospira
- <u>Dystocia</u> has major effect
 Primiparous = 12.6% Multiparous = 6.1% Overall 8.2%
- Compare with 7.8% to 11% reported preweaning heifer deaths – infectious dz

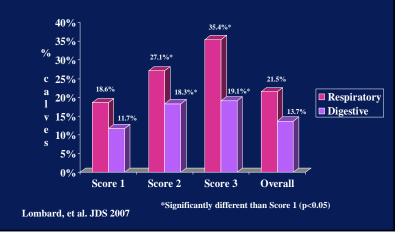
Perinatal Dairy Calf Death Losses

- Calf death before, during, or within 48 hours of calving = Stillborn
- Estimated between 7-8%
 - Meyer et al., 2000; Silva del Rio et al., 2007; USDA:APHIS:VS:CEAH. Dairy 2007
- Stillborns: 78.6% born dead; 21% born alive
 2009. USDA: APHIS: VS: CEAH. Dairy 2007, Calf Health and Management Practices on U.S. Dairy Operations
- ◆~90% of stillborns alive at start of calving
 - Mee JF. Vet Clin Food Anim. 24 (2008).

(Lombard –JDS 2007)

Dystocia Severity Scoring


Score 2 = One person pull


Score 3 = Severe traction or surgery

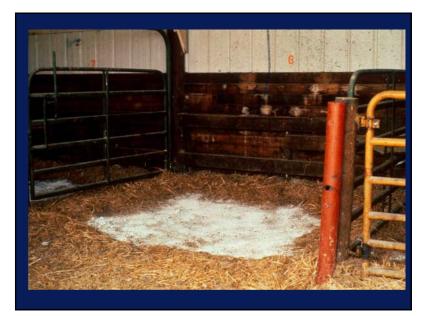
Effects on Heifer Calves – Deaths

Effects on Heifer Calves – Disease

Take Home Messages

- The most dramatic physiological changes occur during birth and death.
- Dystocia has an immediate and prolonged effect on the health and productivity of calves.
- Perinatal mortality due to dystocia accounts for about half of all calf deaths through weaning and increases risk of infectious disease.

Food for Thought

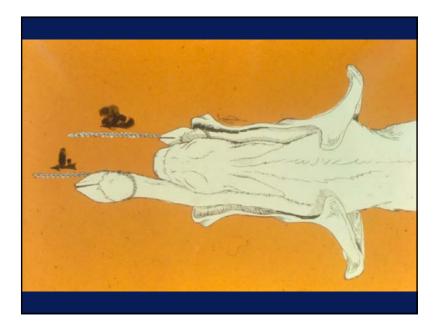

 Simple management and husbandry practices can significantly reduce losses associated with dystocia "If you always do what you always did, you'll always get what you always got."

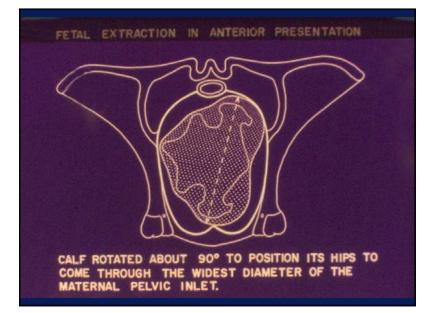
Management to decrease dystocia losses

- Decrease occurrence of dystocia
- Manage dystocia to decrease impact on calves and dams
- Identify abnormal calves and provide more care

Minimizing Dystocia Impacts

- Calving
 - Stress free and comfortable, clean area
 - Monitor cow's progress
 - Assist appropriately when necessary
- Newborn Calf Care
 - Monitor all newborns
 - Provide assistance
 - Assume all dystocia calves need help


Calving management


- Frequent observation
- Note time
- ◆ 1st stage 4 hrs
- ◆2nd stage
 - ♦Cow 1 hr♦Heifer- 2hr

http://www.cvmbs.colostate.edu/ilm/

Minimizing Dystocia Impacts

- Calving
 - Stress free and comfortable, clean area
 - Monitor cow's progress
 - Assist appropriately when necessary
- Newborn Calf Care
 - Monitor all newborns
 - Provide assistance
 - Assume all dystocia calves need help

Normal newborn calves

- Uncomplicated vaginal delivery
- Time to stand < 1 hour
- Good mothering
- Body temperature maintenance
 101-102F
- Active suckling < 2 hours
- Attentive, responsive, active

Neonatal Assistance

- Stimulate and enhance respiration
 - Assist in ventilation of the lungs (breathing)
 - Stimulate by rubbing / drying calf
- Maintain body temperature (thermoregulation)
 - Provide supplemental heat
- Increase blood volume and provide energy
 - ✓ Administer colostrum

Neonatal Assistance

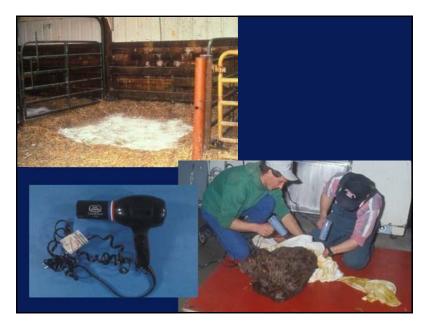
- Stimulate and enhance respiration
 - Place in sternal recumbency
 - Remove mucus from airway
 - Vigorous drying/rubbing on chest
 - Provide positive pressure ventilation
 - Administration of oxygen

Assessment of Vigor

- Head-right, sternal recumbence, attempt to stand, standing
 3, 5, 20, 60 minutes, respectively
 ↑ 15 min to sternal =
 - 84% predictive of nonvitality • Schuijt G., Taverne MA. Vet Record. 1994; 135.

Oxygen Administration

O₂ flow rate= 2-4L/min


Neonatal Assistance

- Maintain body temperature (thermoregulation)
 - Calves generate heat (thermogenesis)via:
 - Physical activity most important source of heat
 - Shivering involuntary muscle contractions
 - Nonshivering (1° Brown fat)
 - ✓ Calves lose heat via:
 - Evaporation reduce by drying calves (also stimulates respiration)
 - Conduction reduce by providing straw or other bedding
 - Convection reduce exposure to wind; dry calves

Neonatal Assistance

- Supplemental heat sources
 - → Heaters, hot water bottles; warming hut
 - Colostrum also provides energy for activity
 - Calf jacket
- If calf's temp is 100° or less provide heat source

Food for Thought: Thermogenesis

- Infrared heater for 24 hrs postpartum
- Significant improvements to:
 - Rectal temp, So₂(%), tidal volume, dynamic lung compliance, & respiratory rate

Uystepruyst CH, et al. Vet J (2002) 52.

Neonatal Assistance

 Increase blood volume and provide energy

Non-immunoglobulin Components of Colostrum

- Other immune-active agents
- Optimum source of standard nutritional elements
- Concentrated energy, protein, vitamins, minerals
- Fluid, warmth

Neonatal Assistance

- Stimulate and enhance respiration
 - ✓ Sternal recumbency
 - Mechanical ventilation
 - ✓ Oxygen therapy
- Maintain body temperature
 - ✓ Heaters
 - ✓ Blankets
- Increase blood volume and provide energy
 - ✓ Colostrum

Calving/Dystocia Monitoring Program

- Record the following:
 - ◆Date of birth
 - ◆Dam / lactation # / Sire
 - Calf alive / dead
 - Singleton, twin, triplet
 - ♦Gender
 - Dystocia score (1,2,3)
 - Calf vigor time to stand and nurse
 - Colostrum quality / timing / volume

Take Home Messages

- Dystocia monitoring should be implemented on every dairy farm.
- Simple interventions for the first few hours after birth can make the difference between life and death.
- Dystocia and subsequent morbidity/ mortality are major economic AND animal-welfare issues for the dairy industry.

