Accelerated Growth: How We Can Influence Her Development

Introduction

- Traditional method of raising heifers is to determine a specific age at which heifers are assumed to be the appropriate size for weaning and breeding, depending on the nutrition and management of that particular dairy.
- Heifer programs are considered to be a major cost with no return until calving Rations formulated for least cost per day instead of cost per pound of gain

Introduction

- Heifers have tremendous ability to utilize protein for increased growth rates
- Nutrition and management needs to be changed to allow the heifer to grow according to its own genetic potential
- Puberty depends on size, not age
- Heifers should be bred according to size
 and not a specific age.

Condition at Birth

- Heifer should be born with adequate body condition
- Thin heifers are born weak with little body reserves (brown fat and muscle tissue)
- Common when dry cows are on pasture without supplementation
- Heifer devotes a major part of early nutrition
 to building fat and protein reserves that
 should already be there

Slows early growth rates

Protein

- Antibodies and many cell signaling factors are proteins
- Proteins are source of glucose for the fetus and for mammary gland post calving
- Limited protein reserves available in the cow, app. 25-35 kg
- Under feeding MP in close-ups causes negative protein balance prior to calving

Uterine Uptake in Relation to Maternal Supply of Organic Nutrients in Late-Pregnant Cows

		Uterin	ne Uptake
	Maternal		% Maternal
Nutrient	Supply, g/d	g/d	Supply
Glucose	1,476	666	46
Amino Acids	998	718	72
Acetate	2,196	270	12

Fetal Development

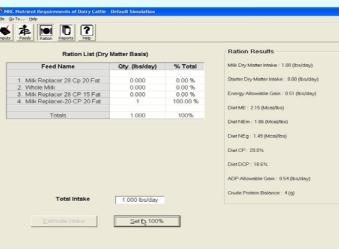
- During late pregnancy fetal metabolic rate is twice that of dam
- Glucose and lactate account for 50 to 60% of metabolic fuel
- · Placental transport of fatty acids is limited
- Fetal uptake of acetate accounts for 10 to 15% of metabolic fuel
- Amino acids account for remaining 30 to 40% of energy

Thin Newborn Calves

Thin Newborn Calves

Colostrum Management

- Inadequate amounts of colostrum result in increased susceptibility to disease.
- Research indicates calves not receiving adequate colostrum grow at 2/3 the rate of other calves.
- Need one gallon (4 liters) immediately after birth, followed by 2 qts (2 liters) within 6-8 hours.
- Should be from mother and not pooled.
- Freezing destroys White Blood Cells
- Cleanliness affects absorption


Epigenetic programming for future milk production, reproductive efficiency, and efficiency of gain.

Traditional Milk Replacers Whole Milk vs. Milk Replacer

- Whole Milk
 - 12.7% solids
 - 27% protein
 - 30% fat
 - 0.285 lbs protein/gal
 - 0.317 lbs fat/gal
 - 50% more protein
 - 67% more fat

- Milk Replacer 20:20
 - 11.4% solids (1 lb per gallon of water)
 - Water = 8.32 lbs/gal
 - Milk Replacer is
 95% dry matter
 - 20% protein
 - 20% fat
 - 0.190 lbs protein/gal
 - 0.190 lbs fat/gal

NRC 20:20 MR 1lb/Gal 2qts BID 68°F

Whole Milk 2qts BID 68° F Leche Entera 2 L BID 20° C

Calf Requirements

Major Inputs Used to Compute Young Calf Requirements

Calf Body Weight : 90 (lbs) Temperature : 68.0 deg. F Diet ME: 2.44 (Mcal/lbs) Diet NEm: 2.10 (Mcal/lbs) Diet NEg: 1.68 (Mcal/lbs)

2

Calculation of Young Calf Requirements

Allowable Gain

Energy Allowable ADG : 0.72 (Ibs/day) ADP Allowable Gain : 0.76 (Ibs/day)

Maintenance Requirement Calculations

Total Milk Dry Matter Intake : 1.00 (Ibs/day) Total Starter Dry Matter Intake : 0.00 (Ibs/day)

Whole Milk 2qts BID 32° F Leche Entera 2 L BID 0° C Page 1 There day: Augert 19, 2010 Calf Requirements Major Inputs Used to Compute Young Calf Requirements Diet ME : 2.44 (Moal/Ibs) Diet NEm : 2.10 (Moal/Ibs) Diet NEm : 2.10 (Moal/Ibs) Diet NEg : 1.63 (Moal/Ibs) Calculation of Young Calf Requirements Allowable Gain Main Mark 100 : Weight Loss

Maintenance Requirement Calculations

Total Milk Dry Matter Intake : 1.00 (Ibs/day) Total Starter Dry Matter Intake : 0.00 (Ibs/day)

28:20 MR 2.63 lbs in 7qts per day 180 grams/liter 7 L cada dia

Page 1

Thus day, August 19, 2010

Calf Requirements

Major Inputs Used to Compute Young Calf Requirements

Calf Body Weight : 90 (lbs) Temperature : 32.0 deg. F Diet ME : 2.21 (Mcal/lbs) Diet NEm : 1.91 (Mcal/lbs) Diet NEg : 1.53 (Mcal/lbs)

Calculation of Young Calf Requirements

Allowable Gain

Energy Allowable ADG : 2.32 (Ibs/day) ADP Allowable Gain : 2.64 (Ibs/day)

Maintenance Requirement Calculations

Total Milk Dry Matter Intake : 2.63 (Ibs/day) Total Starter Dry Matter Intake : 0.00 (Ibs/day)

What is Biologically Normal?

- If left on its mother a 100 lb calf will:
 - Nurse 6 to 10 times per day
 - Consume between 16 and 24% of its body wt per day as milk (20% average)
 - Consume 1.9 to 2.8 gallons of milk per day
 - Consume 2 to 3 lbs of dry milk solids per day
 - Consume 2 to 3 times more milk solids per day than calves on 1 lb of 20:20 milk replacer

- Consume 0.54-0.86 lbs protein vs. 0.19 lbs

Milk Replacer Feeding Program

- 20% Protein and 20% Fat is the most common product used
- Impossible to meet nutritional requirements of milk-fed calves with this product at suggested feeding rate (12% solids & 10% of body weight per day total volume)
- If only product available, must increase the amount of dry matter fed per day by increasing solids content, volume fed, and feeding frequency.

Milk Replacer Feeding Program

Advantages

- Lower bacteria counts than unpasteurized non-saleable milk
- Johne's control programs
- More consistent if proper mixing procedures are followed
- Can mix correct volume as needed per day

Milk Replacer Feeding Program

- Approximately 15 % of body weight during the first week of life (3 quarts twice per day for the average Holstein calf)
- Increase to approximately 20% of body weight at 8 days of age (4 quarts twice per day)
- Increase solids content to at least 15%
- starting at first feeding
 - Maintain at this level until ready to be weaned

Milk Replacer Weaning Program

- Do not force calves to increase starter intake by decreasing milk intake
- Maintain same amount of milk until sufficient calf starter is consumed to wean the calf
- Common to see respiratory disease outbreaks following reductions in amount of milk being fed

Rumen must be developed sufficiently to digest dry starter feed efficiently

Whole Milk Feeding Program

- Hopefully the milk has been pasteurized
- Same volumes as with milk replacer (3 quarts 2X per day for first week followed by 4 quarts 2X per day on day 8 until weaning)
- Can increase solids content by adding milk replacer powder to whole milk. Monitor solids content.
- Higher fat content may delay starter consumption and weaning (should not be perceived as a problem)

Whole Milk Feeding Program

- More economical to feed non-salable milk
- More difficult to maintain consistency when volume of hospital milk changes daily
- Pasteurization is important
- Must have a capable person in charge of mixing the milk with milk replacer, and operating and maintaining the pasteurizer

Make sure that milk is heated up to 105° F just prior to feeding.

Environmental Temperature and Nutritional Requirements

- Thermoneutral range is 50° to 68° F
- High temp & humidity: f energy demands and appetite
- Low temps: 1 energy demands and ability to digest dry matter
- Must increase solids content, volume fed, or number of times fed
- However, if maximizing nutrient intake, program does not have to be changed

Cold Temperatures Management Procedures

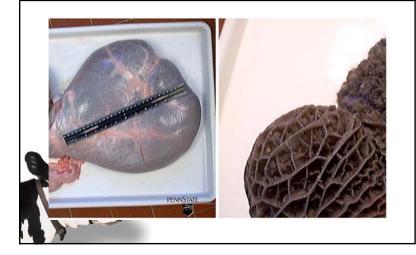
- Increase solids content to 15-18%
- Feed 3 times per day
- Warm milk or replacer to 105° F (40°C)
- Free choice water at all times
- Calves at 39° F (4°C) had 32% increase in energy requirement over calves at 50° F (10°C)
- At 0° F energy requirement more than doubles
- Inadequate energy results in protein depletion

Increasing Nutrient Intake

• Anything that can be done to increase the amount of protein and energy consumed by the milk-fed calf will result in an increase in growth rate, and a significant improvement in the health and productivity of that calf.

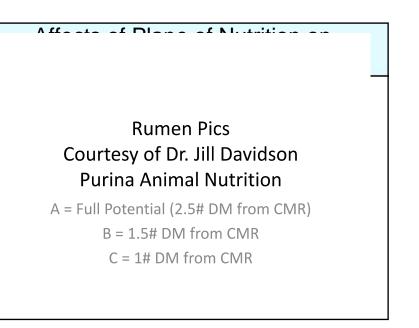
Weaning

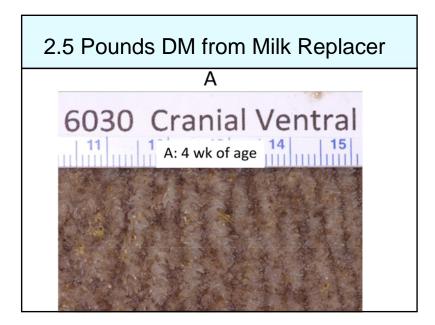
- Depends on milk feeding program and on quality of calf starter.
- Calves should <u>not</u> be forced to be weaned by purposely reducing milk
- Protein and fat in milk are much more digestible than that in calf starter
- If not consuming enough starter prior to weaning, calves will suffer a loss of body condition following weaning

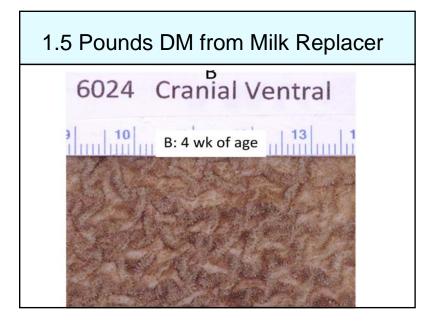


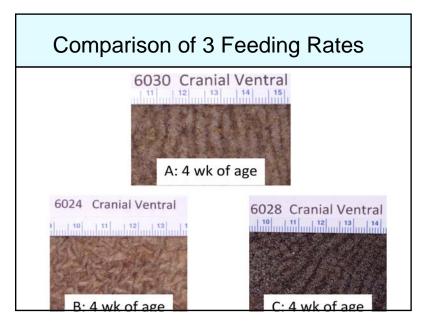
Weaning

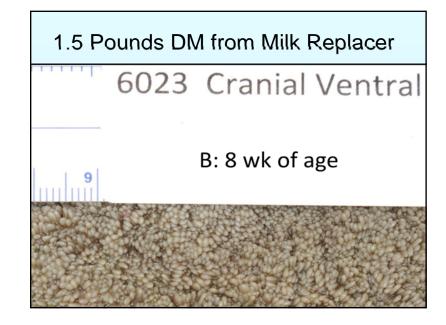
- Based on dry matter intake, not age
- Should be eating 2 lbs of calf starter per day for 3 consecutive days, if a high quality starter is being fed (23-25% protein)
- Typical starters are 18% protein, should be eating 4 lbs of starter prior to weaning
- High levels of starter intake early on is <u>not</u> a good sign. Sign of malnutrition.

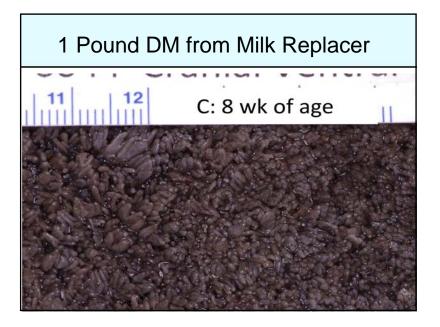

Post-weaning is most common time to see respiratory disease


8 Weeks Old: Milk and Grain (Penn State University)









What is Biologically Normal?

- Nurses 6 to 10 times per day
- Consumes between 16 and 24% body wt
- 100 lb calf consumes 16-24 lbs milk/day (1.9 to 2.8 gallons)
- 2 to 3 lbs of dry milk solids per day
- Allows 2 to 3 lbs of gain per day
- Milk replacer at 1 lb/day = 1/3 to $\frac{1}{2}$ as much

University of Illinois Study

- Fed 3 groups of calves, 26% protein-18% fat, at 10%, 14% and 18% of body weight
- 10% body weight gained 0.79 lbs/day
- 14% body weight gained 1.55 lbs/day
- 18% body weight gained 2.25 lbs/day
- Highest growth rate had highest lean tissue
 to fat tissue ratio

Accelerated Growth Formulas

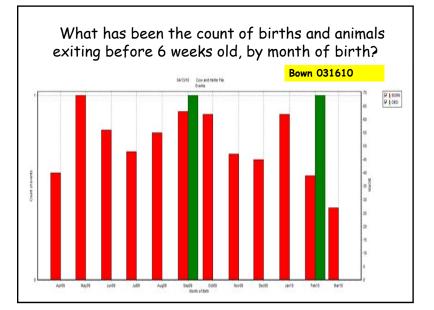
- 26 to 30% protein
- 15 to 20% fat
- Whole milk = 27% protein and 30% fat
- Protein is similar but lower in fat
- Promotes lean tissue gain
- Increases efficiency of gain
- Fat is a satiety agent

Accelerated Growth Formulas

- Stools will be softer than normal
- Larger volume of stool
- Less calf starter consumed initially:
 - Also contributes to softer stools
 - Calf starter offered at 3 days free choice
 - Cleaned out on daily basis

 Increase amount fed as consumption increases

Weaning


- Avg age at weaning is about 8-10 weeks
- When consuming 2 lbs/day for 3 days, wean, if using a high protein calf starter
- If weaned based on intake, calves will be much more consistent in size when moved to 1st group pen
- Calf <u>must</u> have access to free choice water from day 2 on
- If caretaker not willing to provide water free choice,
 Ado not start on accelerated program

Advantages

- Increased growth rate from birth until weaning
- Increased lean tissue to fat tissue ratio
- · Increased efficiency of gain
- Increased parenchymal tissue in udder (more mammary tissue for potential future milk production)
- Improved immune response (decreased sickness and death) death loss <1%

Advantages (cont)

- Decreased labor and medicine costs (medicine costs decreased by 80%)
- Decreased age at first calving
- Program does not have to be altered depending on environmental conditions
- Increased 1st lactation milk production (approximately 1,700 lbs)

Long Term Effects of Morbidity

- Calves that experience a significant disease insult will never catch up to herdmates
- No such thing as compensatory growth
- Calves that experience a disease insult will never be able to reach the same potential milk production as an adult, even though fully recovered
 - fully recovered
- Cornell study: calves treated with antibiotics gave 493 kg less milk during 1st lactation than untreated calves

Disease Incidence and Nutrition

- When troubleshooting disease outbreaks, evaluate nutritional management
- Disease incidence often correlates to changes or deficiencies in the nutrition program
- Can significantly reduce disease incidence, morbidity and mortality by improving the nutritional management

Vaccine Efficacy and Nutrition

- Vaccine failure is almost always related to the ability of the animal to respond to the vaccine, not the vaccine efficacy
- Excellent nutrition is necessary to maximize immune response to vaccine
- Design vaccination program around periods of low stress, and ability of immune system
 to respond to antigen
 - There is no such thing as the "perfect" vaccination program

Nutrition and Disease Resistance

- Management and hygiene is extremely important
- Effects of nutrition on immune competency is often ignored
- Minimize environmental and social stress
- Calves have an amazing ability to fight disease if immune system has proper fuel

Death loss of <1% is obtainable with proper management and nutrition

Starting New Feeding Programs

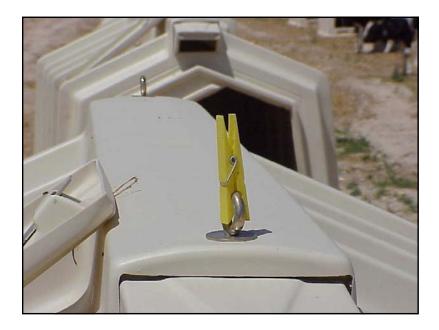
- Must make adjustments in solids content gradually
- Calves will usually not eat a new starter formulation for several days
- Expect to see larger volumes of stool with slight change in consistency
- Caretakers must be educated that this is
 normal

• Texture • Flavor • Consistency

- Moisture
- Protein Content
- Protein Quality

Calf Starter Feeding

- Start within 3 days of birth
- Fresh every day
- Start with small amount
- Gradually increase
- Free access to water
- Wean according to intake



Weaning

- 2 lbs/day (1 kg) for 3 days (25% protein)
- 4 lbs/day (18% protein)
- Best to wean gradually
- Don't cut one feeding
- Leave calf in hutch until eating 6-8 lbs (3 kg) starter

Higher Protein Calf Starters

- 22 to 26% protein
- Must maintain similar protein level
- Feed calf starter without hay for minimum of 2 weeks after weaning
- Monitor calf starter intake; should increase to 6-8 lbs per day within 1 week

Starter to Grower

- 6-8 lbs starter for 7 days
- Move to small group pens
- Leave on starter for 3-4 days
- Start on grower ration with 20% high quality

Uniformity in Size is Important in Maintaining Maximal Growth

- Weaning by dry matter intake helps ensure a more uniform size when moved to first group pens
- Calves that are smaller in size will never be able to reach their potential growth rate
- Small calves should be held back and placed with a group that is closer to its size

Low Protein Diets

- Most common problem interfering with growth rates and disease incidence
- Heifers are smaller, poor body condition, and "paunchy" with distended abdomens full of poor quality forages
- Heads often appear larger than expected

Hay GC 2009 3.0758 Indge Boury 72410 11.1988 Indge Doury 72410 11.1988 IndeMadSolv 0.0000 Micro Relation 2010 12.1 Model IndeMadSolv 0.0000 Me Bal (0) 10.6 Jaur (% Cr) 22.6 Foragetor F(% 1007) 34.5 meritien 0.7500 Baster Corv Im Nite 0.0000 IsseeSchre 0.7000 Rumen Hildelance 0.7000 Rumen Hildelance 0.7000 Rumen Hildelance 1.0000 (% 1002)	Feed Name	Amount 🔺	CNCPS	Amino Acid	s MinVit M	etE&P P&E	Diet Summi	av Prot Pools Carb Pool	Carb Fer
Image Bourn 7-28-10 I.1564 Cost (\$) 0.79 [DF (\$) -0.79 Ima Sloge 9-27-04 0.000 101 11.35 Model 107.4 Image Bourn 7-28-10 Image Bourn 7-28-10 11.35 Model 107.4 Image Bourn 7-28-10 Image Bourn 7-28-10 11.35 Model 107.4 Image Bourn 7-28-10 Image Bourn 7-28-10 11.35 Model 107.4 Image Bourn 7-28-10 Image Bourn 7-28-10 11.35 Model 107.4 Image Bourn 7-28-10 Image Bourn 7-28-10 11.35 Model 107.4 Image Bourn 7-28-10 Image Bourn 7-28-10 11.35 Model 107.4 Image Bourn 7-28-10 Image Bourn 7-28-10 11.35 Model 107.4 Image Bourn 7-28-10 Image Bourn 7-28-10 10.0 10.8 Image Bourn 7-28-10 Image Bourn 7-28-10 12.8 Image Bourn 7-28-10 10.4 Image Bourn 7-28-10 Image Bourn 7-28-10 Image Bourn 7-28-10 10.5 10.5 Image Bourn 7-28-10 Image Bourn 7-28-10 Image Bourn 7-28-10 10.5 10.5 Image Bourn 7-28-10 Ima	AlfHav GX 2009			1					
m3 Slage 32-29 0.0000 UM1 (bl(0) 12.1 Model 113.5 % Model 107.4 madelealSoV 0.6811 MF Bd (g) 160.6 KLP (%) 17.4 (br (%) 94.5 menten 0.7500 MF Bd (g) 160.6 KLP (%) 2.7 (br orgetIDC (%) MD7 87.5 itesseCane 0.0000 MR Bd (g) 160.6 KLP (%) 2.7 (br orgetIDC (%) MD7 94.5 tear 0.0000 MP MP (%) 0.0 (CA (%) 2.7 (br orgetIDC (%) MD7 94.6 tear 0.0000 MR/ME (%) 2.7 (br orgetIDC (%) MD7 94.6 94.6 tear 0.0000 Mament 8 blance Up (% (%) 3.5 (br (%) 3.6 tear 0.0000 S7.9 (% (%) 1.2 (% MD7	arlage Bown 7-28-10								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Corn Silage 9-22-09		DMI (I	b/d)					
amm Fibial Corn 2.132 MP Bd (g) 10.06 (FW (% CP) 2.26 (ForogebUF (% NDF) 7.79 mmentern 0.7000 MP Bd (g) 10.06 (FW (% 0.2) 2.7 (ForogebUF (% NDF) 3.8 cd coW In Nix 0.0000 Rumen IK Balance Uppin (%) 2.8.0 4.5 biseesCare 0.7000 Perk (% MP) 2.24 (EC (%) 3.7 (PaleDF (%) 3.6 tder 0.0000 Rumen IK Balance Uppin (%) 4.5 5000 (%) 2.6 tder 0.0000 Perk (% GP) 1.28 (Sr rdd) 1.30 (Sr rdd) 1.31 (Sr rdd) 1.30 (Sr rdd) 1.31 (Sr rdd) 1.30 (Sr rdd) 1.31 (Sr rdd) 1.30 (Sr rdd) 1.31 (Sr rdd) 1.30 (Sr rdd) 1.31 (S	anolaMealSolv		ME Ba	l (mCal)	2.4 C	P (%)	17.6	NDF (%)	34.5
menten 0.750 HP / MP (%) 0.0 (LCR (%) 2.7 (ForgapiDF (%) MP) 30.4 d Cow Mn Mx 0.3000 BactMP (%) MP / 72.4 (Et (%) 3.7 pelDF (%) 29.0 stessEcane 0.3000 Trans Mashies Upinn (%) 4.5 stessEcane 0.0000 Fept (g) 2.2 (Fept & NH3 (g) 30 NFC (%) 37.0 Met fix rgd 133 (% rgd 128 (S1 Acids (%) 2.6 Met (% rgd) 3.7 (ps (g) 16.9 Storch (%) 10.3 Met (% rgd) 3.7 (ps (g) 16.9 Storch (%) 15.2 Met (% rgd) 1.78 (ps (g) m) 7.11 (sd Faber (%) 9.0 Met (% rgd) 1.78 (by (fw rgl) 7.11 (sd Faber (%) 9.0 Met (% rgd) 1.78 (by (Fw rgl) 7.11 (sd Faber (%) 9.0 Trg: 0.0 0.00 0.00 0.00 Vield Corstaxt Composition Constant ME: 0.0 r(% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	team-Flaked Corn								
t Cov Mn Mox 0.0000 lssescCore 0.0000 lssescCore 0.0000 lssesCore 0.0000 lssesCore 0.0000 lstref 0.0000 lstref 0.0000 lstref lstref 0.0000 lstref ls	ermenten								
Idexact Date 0.7000 Ferrer Light (%) 4.5 der 0.0000 Ferrer 103 % rqd 123 \$1 Add (%) 3.7.0 Marce Add Babece Sugar (%) 1.0.3 % rqd 123 \$1 Add (%) 1.0.3 Met (%) 0.7000 Ferrer Sugar (%) 1.0.3 % rqd 1.0.3 Met (%) 7.701 (yc f0) 1.6.9 Starth (%) 1.5.2 % rqd 1.7.1 Set Fiber (%) 9.0 Met (% rqd) 7.781 (yc % rqd) 1.7.1 Set Fiber (%) 9.0 1.1.1 Prescible production des Met Met and MP Trgr 0.0 0.00 0.0 0.00 0.00 0.00 Yield Constant Composition Constant 0.0 0.00 </td <td>ct Cow Min Mix</td> <td></td> <td></td> <td></td> <td></td> <td>E (%)</td> <td></td> <td></td> <td></td>	ct Cow Min Mix					E (%)			
Start Top: 0 133 [% rqd 128 [SLAdds (%) 2.6 Amin Aod Balence Scoper (%) 10.3 Met (%) 0.5 Scoper (%) 10.3 Met (%) 74 [up Math Scoper (%) 9.0 Met (%) 74 [up Math 3.111 Footback Scoper (%) 9.0 Met (% rqd) 1.78 [up (% rqd) 1.74 [up Math 3.1111 Footback Scoper (%) 0.0	olassesCane								
Amino Add Bolance Sugar (%) 10.3 Wet (g) 57 [Us (g) 1.63 Starch (%) 15.2 Wet (%) r07 1.78 [Us (%) 1.63 Starch (%) 15.2 Wet (%) r07 1.78 [Us (%) 1.71 [Us (%) 1.71 [Us (%) Met (%) r07 1.78 [Us (%) 7.43 [Us (%) 3.11:1 Passible production due to ME and MP Milk(b) Fat (%) CP (%) Trg: 0.0 0.00 0.00 0.00 0.00 Virgit 0.0 0.00 0.00 0.00 0.00 n/4 ME: 0.0 n/a 0.00 0.00 0.00 0.00 n/4 MF: 0.0 n/a 0.00 0.00 0.00 0.00 n/4 Met: 0.0 n/a 0.00 0.00 0.00 n/4 0.0 n/a 0.00 0.00 0.00 0.00 n/4	/ater	0.0000							
Met (g) 5.7 [Up (g) 16.9 [Storch (%) 15.2 Met (% rqf) 1.71 [Storch (%) 5.0 Met (% rqf) 1.73 [Up (% rqf) 5.0 Met (% rqf) 1.73 [Up (% rqf) 5.01 Met (% rqf) 1.73 [Up (% rqf) 3.111 Possible production due to ME and MP Mit(b) Fet (%) 6.0 Trig: 0.0 0.00 0.00 0.00 Wet (% rqf) 1.91 [Storker (%) Fet (%) CP (%) Mit(b) Fet (%) CP (%) 0.00 0.00 Vield Constant 0.0 0.00 0.00 0.00 ME: 0.0 r(% 0.00 0.00 0.00 0.00 Adjustmets/based on Rulgan AA Ratios: 0.0 r(% 0.00 0.00 0.00 0.00 r(% = Equations runt available 0.00 0.00 0.00 0.00 0.00 0.00						6 rqd			
Met (% rod) 171 [sd [Fber (%) 9.0 Met (% rod) 2.30 [sr (% rod) 171 [sd [Fber (%) 9.0 Pressible roduction de M Met (% rod) 7.41 [yr/Met 3.111 Trg: 0.0 0.00 0.00 0.00 Trg: 0.0 0.00 0.00 0.00 Yield Constant Composition Censtant Met 0.0 0.00 0.00 Met 0.0 n.00 0.00 0.00 0.00 0.00 0.00 Met 0.0 n.00 0.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Met (% mp) 2.30 [up (% mp) 7.43 [upsMat 3.111 Possible production de to ME and MP Mil(b) Fet (%) CP (%) Trg: 0.0 0.00 0.00 0.00 0.00 Viet 0.0 0.00 0.00 0.00 0.00 0.00 Weit 0.0 n/a 0.00 0.00 0.00 n/a MP: 0.0 n/a 0.00 0.00 0.00 n/a MP: 0.0 n/a 0.00 0.00 0.00 0.00 n/a MP: 0.0 n/a 0.00 0.00 0.00 0.00 n/a MP: 0.0 n/a 0.00 0.00 0.00 0.00 n/a n/a Equations nut available 0.00 0.00 0.00 0.00 0.00 0.00									15.2
Fessible production due to ME and MP Fest (%) CP (%) Trig: 0.0 0.00 0.00 0.00 0.00 Trig: 0.0 0.00 0.00 0.00 0.00 0.00 WE: 0.0 n/a n/a 0.0 0.00 0.00 n/a ME: 0.0 n/a 0.00 0.00 0.00 n/a ME: 0.0 n/a 0.00 0.00 0.00 n/a MP: 0.0 n/a 0.00 0.00 0.00 n/a n/h 0.00 0.00 0.00 0.00 0.00 0.00 n/h 0.00 0.00 0.00 0.00 0.00 0.00									
Mill(b) Fat (%) CP (%) Mill(b) Fat (%) CP (%) Trg: 0.0 0.00 0.00 0.00 0.00 0.00 Yield Constant Composition Constant Composition Constant 0.00 0.00 0.00 0.00 ME: 0.0 n/a 0.00 0.0 0.00 0.00 N/a MP: 0.0 n/a 0.00 0.0 0.00 0.00 N/a Justments based Roliquin AR Ratios: 0.0 0.0 0.00							7.43	Lys:Met	3.11:1
Trg: 0.0 0.00 0.00 0.00 0.00 Vield Constant Composition Creationt Consposition Creationt 0.00 0.			Possib						
Yield Constant Composition Constant ME: 0.0 n/a n/a 0.0 0.00 n/a MP: 0.0 n/a 0.00									
ME: 0.0 n/a n/a 0.00 n/a MP: 0.0 n/a 0.00 0.00 0.00 0.00 Adjustments based on Rulquin AA Ratios: 0.0 0.00 0.00 0.00 0.00 0.0 n/a 0.00 0.00 0.00 0.00 0.00			Trg:	0.0					0.00
MP: 0.0 n/a 0.00 0.0 0.00 0.00 Adjustments based on Rulquin AA Ratios: 0.0 n/a 0.00									
Adjustments based on Rulquin AA Ratios: 0.0 n/a 0.00 0.0 0.00 0.00 n/a Equations not available									
0.0 r/a 0.00 0.0 0.00 0.00 0.00 0.00 0.00 r/a Equations not available							0.0	0.00	0.00
n/a - Equations not available			Adjust						
							0.0	0.00	0.00
Ration DM (%) 61.04 Forage (% DM) 65.91									
			Ration	DM (%)	61.04	Forage	e (% DM)	65.91	
	Relative Intake								
	100.0000 % 🔳 Ap								
00.0000 % 🔄 Apply Cum. %		0.0000							
	Click help with the								

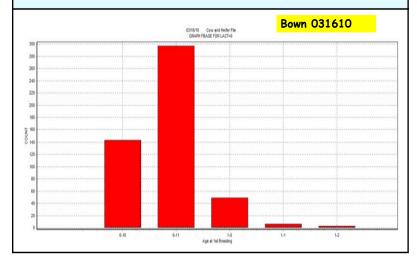
l				nergy Old H				
Total	13.10	10.71	2.40	564	392	172		
Maint	13.10	7.78	5.32	564	237	328		
Preg	5.32	0.00	5.32	328	0	328		
Lact	5.32	0.00	5.32	328	0	328		
Growth	5.32	2.93	2.40	328	155	172		
Reserves	2.40	0.00	2.40	172	0	172		
DMI Predicted		11.3	lb/d	Pept & NH3	3 Bal	26	g/d	124 %
DMI Actual		12.1	lb/d	Pept Bal		2	g/d	103 %
Predicted Rumina	al pH	6.46		Urea Cost		0.270	mCal/d	
Target Growth		1.12	lb/d					
Input Growth		1.12	lb/d					
ME Allowed Grow	vth	1.93	lb/d					
MP Allowed Grow	vth	2.41	lb/d					
AA Allowed Grow (Histidine)	/th	3.03	lb/d					
Concentrie Weigh	ht	0.00	h					

Grouping of Heifers

- Smaller dairies: grouping is extremely difficult
- Wide range of age makes ration formulation difficult
- Must fulfill the requirements of the youngest animal to get maximum growth rate
- Monitor older animals in group to make sure they do not become over-conditioned

Heifer Rations

- Number of rations depends on group sizes & no. of heifers
- Analyze push-out
- May want to utilize lactating ration and push-out for heifers


Session: BBD Hfr 9-13 mo				lb,Growth=1.08 I					
Feed Name	Amount *	CNCPS	Amino Acid	: MinV/k Met E	& P P & E [liet Summ	ary Prot Pools Carb Poo	ls 🛛 Carb Fer	m Bact Eval Feeding Sheet Batch Mix kp & CHO-83 kd Fatty Acids P & N Bal RUP Dig
AlfHay GX 2009	5.5000		-	1.04 JOF (
Barlage Bown 7-28-10	15.0000 =	Cost (1.04 JOF (16.6 Mode		-1.04	% Model		
CornGrnFlkd28lb	4.4000	DMI (I						118.3	
CanolaMealSolv	0.7000		l (mCal)	5.0 CP (9			NDF (%)	34.4	
Fermenten	0.8500	MP Ba		298.6 RUP			ForageNDF (% NDF)	88.5	
Lact Cow Min Mix	0.4000		(P (%)	0.0 LCFA			ForageNDF (% DM)	30.4	
			P (% MP)	72.2 EE (9	6)		peNDF (%)	29.2	
			n N Balance				Lignin (%)	4.3	
		Pept (& NH3 (g)		NFC (%)	38.7	
		% rqd		96 % rq	d		Sil Acids (%)	2.5	
			Acid Balan				Sugar (%)	6.7	
		Met (g		9.2 Lys (Starch (%)	20.4	
			% rqd)	207 Lys (Sol Fiber (%)	9.1	
		Met (9		2.37 Lys (7.26	Lys:Met	3.07:1	
		Possib		on due to ME ar					
			Milk(lb)						
		Trg:		0.00	0.00	0.0			
				Yield Constant			Composition Constan		
		ME:	0.0	n/a	n/a	0.0			
		MP:	0.0	n/a	0.00	0.0	0.00	0.00	
		Adjust		d on Rulquin A					
			0.0	n/a	0.00	0.0	0.00	0.00	
			Equations n						
		Ration	I DM (%)	61.66	Forage	(% DM)	66.23		
B14 141	*								
Relative Intake 100.0000 % Apr	lu Our N								
100.0000 % Ap									
	0.0000								
👔 Click help with the	left mouse butto								

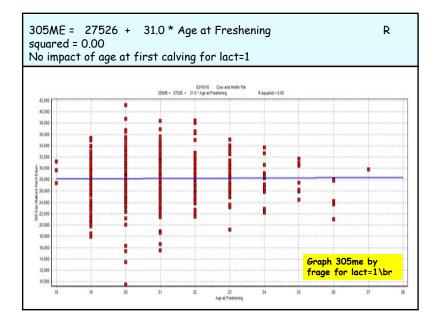
	Prote	in t	o Er	nergy	Ra	tion)		
	9-13	Mc	onth	Old H	Heif	ers			
Total	17.24	13.45	3.78	725	470	254			
Maint	17.24	9.86	7.38	725	320	405			
Preg	7.38	0.00	7.38	405	0	405			
Lact	7.38	0.00	7.38	405	0	405			
Growth	7.38	3.59	3.78	405	151	254			
Reserves	3.78	0.00	3.78	254	0	254			
DMI Predicted		13.9	lb/d	Pept & NH3	3 Bal	34	g/d	125	%
DMI Actual		16.4	lb/d	Pept Bal		1	g/d	101	%
Predicted Rumin	nal pH	6.46		Urea Cost		0.375	mCal/d		
Target Growth		1.08	lb/d						
Input Growth		1.08	lb/d						
ME Allowed Gro	wth	2.07	lb/d						
MP Allowed Gro	wth	2.98	lb/d						
AA Allowed Gro	wth	3.63	lb/d						
(Histidine)									
Concentus Weic	bt	0.00	h						

Breeding Criteria

- Breeding initiated when wither height is 51 inches (130 cm). Common range is 48-52.
- Approximately 28% reach breeding height by 10 months, 60% by 11 months, and the rest by 12 months.
- Delayed breeders should be culled.
- Evaluate heifers at 400 lbs for possible culls.

GRAPH FBAGE FOR LACT=0

Delayed Breeding

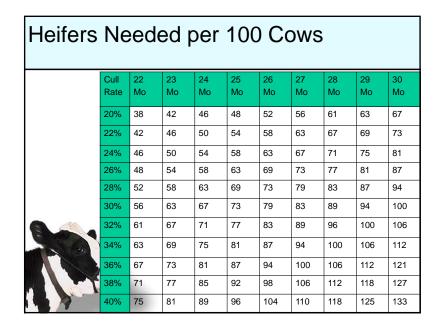

- Waiting too long to initiate breeding often results in over-conditioned heifers
- Frame growth slows down as heifers mature
- Older heifers tend to gain excessive body condition
- Results in more calving difficulties and
- metabolic disease

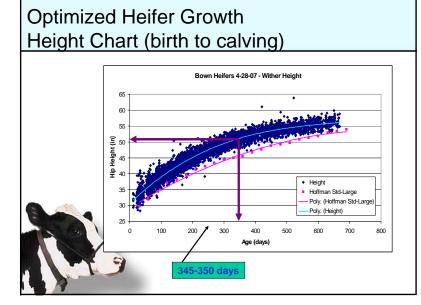
Feed Name / /heat Straw /fHav GX 2009	Amount ^ 3.7000					Diet Surre-	au Prot Pools Carl-Pools	Cath Fee	Bact Eval Feeding Sheet Batch Mix kp & CHO-B3 kd Fatty Acids P & N Bal RUP Dig
			1111101101			UNI JUIN		- Cubica	
	16.5000 =	Cost (\$	\$)	1.02	OF (\$)	-1.02			
orn Silage 9-22-09	13.0000	DMI (b	o/d)	22.5		19.0	% Model	118.1	
act Cow Min Mix	0.3000	ME Bal	l (mCal)	-3.3	CP (%)	15.1	NDF (%)	47.2	
	0.5000	MP Bal	(g)	137.7	RUP (% CP)	28.2	ForageNDF (% NDF)	100.0	
		NP/M	.P (%)	0.0	CFA (%)	1.6	ForageNDF (% DM)	47.2	
		BactMF	P (% MP)	68.3	E (%)	2.3	peNDF (%)	43.2	
		Rumen	n N Balanci	e			Lignin (%)	7.6	
		Pept (c	J)	24	Pept & NH3 (g)	47	NFC (%)	29.0	
		% rqd		130	6 rqd	129	Sil Acids (%)	1.0	
		Amino	Acid Balar	nce			Sugar (%)	7.0	
		Met (g)	4.4	ys (g)	19.1	Starch (%)	4.9	
		Met (%	6 rqd)	130	ys (% rqd)	140	Sol Fiber (%)	16.1	
		Met (%	ь mp)	2.12	ys (% mp)	7.40	Lys:Met	3.49:1	
		Possibl	le producti	ion due to N	IE and MP				
			Mik(b)	Fat (%)	CP (%)	Milk(lb)	Fat (%)	CP (%)	
		Trg:	0.0	0.00	0.00	0.0	0.00	0.00	
				Yield Cons	tant		Composition Constant		
		ME:	0.0	n/a	n/a	0.0	0.00	n/a	
		MP:	0.0		0.00	0.0	0.00	0.00	
		Adjustr	ments bas	ed on Rulqu	in AA Ratios:				
			0.0		0.00	0.0	0.00	0.00	
				not available					
		Ration	DM (%)	67.09	Forage	e (% DM)	98.69		

	Prot	ein [·]	to E	inergy	/ Ra	atio			
	P	reg	nan	t Heif	ers				
Total	20.74	22.43	-1.69	898	753	145			
Maint	20.74	12.49	8.26	898	491	407			
Preg	8.26	0.00	8.26	407	0	407			
Lact	8.26	0.00	8.26	407	0	407			
Growth	8.26	9.94	-1.69	407	262	145			
Reserves	-1.69	0.00	-1.69	145	0	145			
DMI Predicted		19.2	lb/d	Pept & NH3	3 Bal	52	g/d	131 9	6
DMI Actual		22.9	lb/d	Pept Bal		19	g/d	122 9	6
Predicted Rumina	al pH	6.46		Urea Cost		0.285	mCal/d		
Target Growth		1.90	lb/d						
Input Growth		1.90	lb/d						
ME Allowed Grow	vth	1.60	lb/d						
MP Allowed Grow	vth	2.93	lb/d						
AA Allowed Grow	/th	3,53	lb/d						
(Histidine)									
Concentus Weigh	ht	0.00	lh						

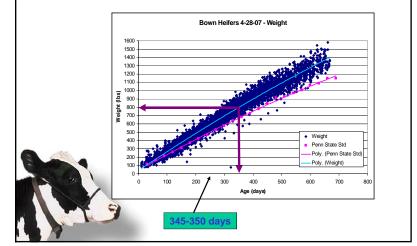
Close-up Heifers

- Larger dairies: separate heifers from older cows
- Decrease competition at feed bunk and increase dry matter intake prior to calving
- Provide adequate bunk space
- Adjust ration according to number of animals on daily basis, especially if using neg DCAD
- Formulate for lowest DMI in closeup group Provide more space in open maternity areas
 - to decrease DOA's




No Difference Parameters by By FRAGE	Fre	sh Age		1 30 fo fr	um w4mk w12mk 05me by frage or lact=1 rage=1-24\b Av:305ME
1-6	1	4	69.8	76.2	29872
1-7	15	70	62.6	72.2	27618
1-8	32	151	66.8	73.9	28172
1-9	24	114	67.2	74.0	28178
1-10	17	82	69.6	74.8	28468
1-11	9	44	70.8	77.0	28958
2-0	3	13	68.8	74.8	27602
	====				======
Tqtal	100	478	67.3	74.2	28215

Does ADG at	ffect	Lact=1	l perfor	mance?
By ADG	Pct	Count	Av M305	AvME305
1.64	25	113	21340	27626
1.81	23	107	22086	28925
1.91	26	120	22676	30094
2.07	26	118	22864	30815
	====	=====	======	======
Total S	100	458	22274	29426


Does ADG affect Lact=1 performance?

Count Av PEAK	Pct	By ADG
113 81	25	1.64
107 82	23	1.81
120 86	26	1.91
118 89	26	2.07
====== =====	====	· · · · · · · · · · · · · · · · · · ·
458 85	100	Iotal

Optimized Heifer Growth Weight Chart (birth to calving)

Nutritional Considerations

- 1. Rations formulated to increase frame size without excessive body condition.
- 2. Previous NRC overestimates energy and underestimates protein needed to accomplish increased frame size without excessive fat deposition.
- 3. Maximize rumen microbial growth: improves feed efficiency, optimizes amino acid balance, enhances growth in frame size and muscle deposition

Nutritional Considerations

- 4. Maximize dry matter intake: feed bunk space, fresh feed & water, good quality forages, clean dry & comfortable environment.
- 5. Monitor body condition scores
- The nutritionist should support the principle of optimizing heifer growth for the program to be successful

-Ouestions?

Summary

- Good calf management procedures must be in place
- Accelerated growth program will not compensate for poor management
- Colostrum management just as important
- Calves must have free choice water
- Sanitation of environment and utensils
- Rations must be formulated to maximize growth without becoming over-conditioned

