

Reducing Mortality in the First 24-hours

- Most calves that die within 24-hours of birth are alive when born
- With normal presentation, sustained progress, observe but do not assist
- If moved during labor, allow time for labor to resume

Herd Goals for Dairy Calves

- Stillbirth rate for whole herd less than 6%.
 - First lactation: less than 8%
 - Second lactation and greater: less than 4%
- Stillbirth rates > 10%, need calving management training
- Not more than 30% of calvings need assistance
- Calves dying in first 24-48 hours: < 2%
- Calves dying 48 hours to weaning: < 5%

Achieving Goals: Have a Calving Plan

- Standard procedures are
 Hygiene and lubrication understood and recorded
- Intervention criteria are established
 - Time
- Progress
- Position of Calf
- Good labor area
 - Space
- Cleanliness
- Lighting
- Restraint capability

- during assistance
- Good records
- Attention to calving ease in sire selection
- Training of calf group

Reducing Mortality in the First 24-hours

- Prevent dystocia
 - Sire calving ease (SCE) <8%
 - Daughter calving ease (DCE < 6%)
- Assist only when necessary
- Particular attention to first calf heifers and cows with twins
- Train, train and retrain
- · Monitor equipment, supplies, calving cows and records

Training to Reduce Stillbirths

- 1. Description of signs associated with labor stages
- Learn when and how to assist
- 3. Know how to correct abnormal presentation, position or posture of calf
- 4. Calving hygiene practices
- Accurate record keeping
- **Expected communication**
- Newborn calf care

Unassisted Vaginal Delivery is Best for the Calf and the Cow

- Vaginal delivery improves calf vigor and survival
- Outside the pen supervision every 15 minutes
- Assist only when necessary
- Abnormal position
- Sustained lack of progress
 - 70 min after amniotic sac
 - 65 min after feet appearance*
- Use proper assistance protocols
- Call for help before it is too late.

*Schuenemann GM et al, JDS

Advancing animal and human health with science and

Observation for Normal Behavior

- · Head righting in minutes
- Sitting in 5 minutes
- Attempts to stand within 15 minutes
- Standing within 1 hour
- Temp high at birth, declines to 101-102 by 1 hour
- Suckling within 2 hours

Drug-Free Resuscitation

- Postural drainage
- Topline towel rub from tailhead to poll
- Towel stimulation of ears, eyes and nose
- Compress and shake trachea
- Ice-water in ear
- Pinpoint nasal pressure
- Suction nose and throat
- Infrared radiant heat

Advancing animal and human health with science compassion

40

Ice Water Technique

- 60 cc of ice water in the ear
- 250 to 500 cc over the poll of the head
- Results in vigorous head shaking
- Improved pulmonary gas exchange

Navel Care

- Prevent infection
 - Spontaneous rupture
 - Clean calving environment
 - Immediate removal to well-bedded calf pen
 - Clean colostrum
 - Navel disinfection spray or dip cord
 - 1,2, and 7% iodine
 - 0.5% chlorhexidine
 - Navel-Guard

Put Colostrum Testing Into Action

Mark High-Risk Calves

Classify Herd Status

- Failure of Passive Transfer Based on serum total protein (STP)
 - More than 20% below 5.5 gm/dl
 - More than 10% below 5.2 gm/dl

Refractometer Calibration Lab TSP vs. Refract 1 TSP (Room Temp) y = 0.947 ts + 0.6605 R² = 0.65376 Library (Lab TSP vs. Refract TSP) Library (Lab TSP vs. Refract TSP) Refractometer TSP (gidt.)

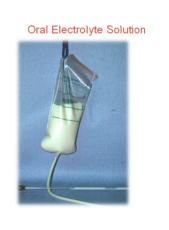
A systematic review of colostrum protocols may be needed.

- Colostrum Volume
 - Less than 4 quarts given by esophageal feeder
 - Less than 3 quarts suckled
- Colostrum Quality
 - High producing cows
 - Delayed milking
 - Calf suckles
- Cow leaks
- Short dry period

- Poor absorption
 - Delayed feeding
 - Bacterial contamination
 - Additives in maternal colostrum
 - Calving assistance

Training to Use the Esophageal Feeder

Selective Use of Esophageal Feeder

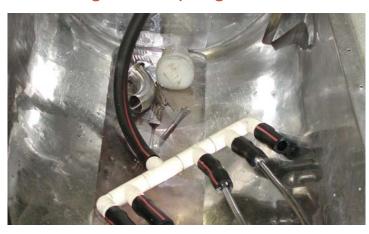

- Standing position for calf if possible
- Calf must be able to maintain sternal recumbency
- · Not for use in calf with respiratory effort
- Not for use in calf with abdominal distension
- Equipment is sanitized and in good condition
- Do not force feed milk/milk replacer without veterinarian's recommendation
- Limit forced milk feedings (usually 3 or less)

Equipment Selection

Colostrum

Pass the feeder only once!

Keep the nose below the ears.

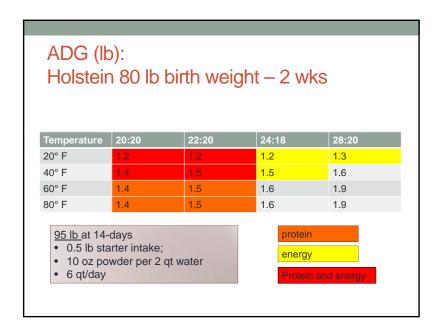


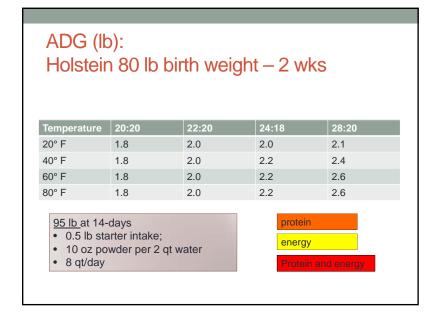
How many esophageal feeders are needed?

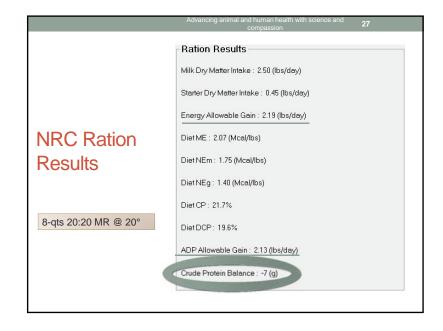
The number should equal the maximum number of calves that might need an esophageal feeder in one day – colostrum or oral electrolyte solution.

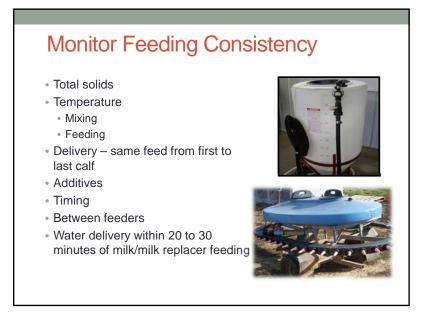
Sanitizing the Esophageal Feeders

Are We Feeding Enough?




- NRC Simulation Program
- Use actual ration inputs
- Assumptions may be needed for starter intake
- Adjust for calf body weight
- Use environmental temperature
- Have a plan


Average Daily		
Gain (lb/day)		
1.0		
1.2		
1.6		
1.8		
2.0		
2.0		
1.4		


Assumptions Needed for NRC Calculator

Week	Body Weight	Estimated Starter Intake (lb)	Average Daily Gain (lb/day)
1	Ave birth wt	0.25	1.0
2	Birth wt +7	0.5	1.2
3	Week 2 + 8.4	0.75	1.6
4	Week 3 + 11.2	1.0	1.8
5	Week 4 + 12.6	1.5	2.0
6	Week 5 + 14	2.0	2.0
7	Week 6 + 14	3.0	1.4

Total Solids

Calculate

- 10 oz powder = 0.625 lb
- 2 qt water = 4.17 lb

0.625

0.625 + 4.17

• = 13% solids

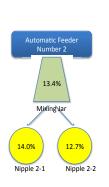
Total Solids

•< 2% change per day

•Never > 18%

Measure

Variability may be more than you expect.

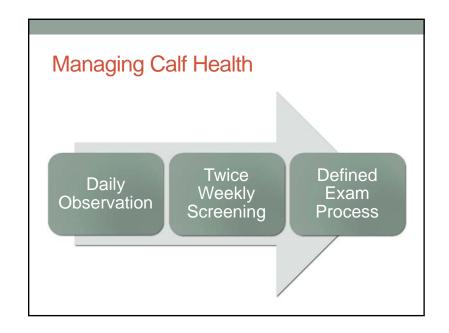

Days	28:20 - weight	22:18 - volume
1	12.2	15.6
2	11.5	17.0
3	12.5	19.3
4	8.8	16.0
5	10.9	14.4

Koepnick and McGuirk, 2010

Milk Delivery Consistency

- What is calculated
- What is in the machine or bucket
- What the calf drinks

The Importance of Water

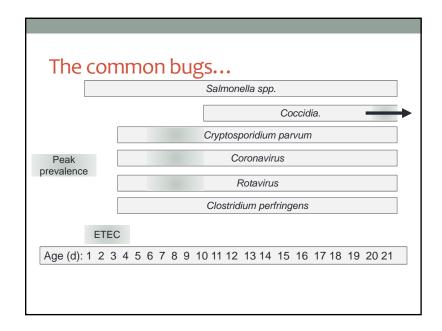

- Fed after every feeding
- Winter and summer
- Starting by day 3
- Delivered warm
- Especially with diarrhea
- Absolutely necessary for calves getting electrolytes
- Allows the calf to "correct" feeding errors

Regularly Assess Milk Quality

Sample Type	 Total Bacterial Count	Goals (cfu/ml) Total Coliform Count	Total <i>E. coli</i> Count
Colostrum	< 100,000	< 10,000	< 1,000
Waste Milk	< 500,000	<200,000	< 1,000
Pasteurized waste			
milk	< 20,000	< 1,000	< 100
Milk replacer	< 10,000	< 1,000	0

With automatic feeders, collect milk through the nipple.

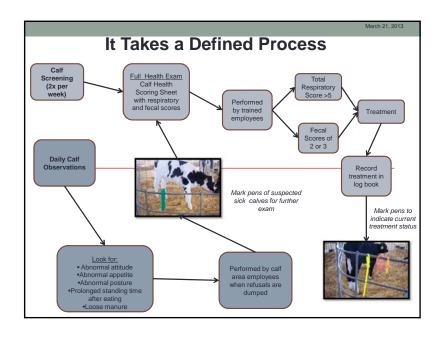
Early Detection for More Effective Treatment


Effective and Efficient Calf Health Screening

- Maximize disease detection
- Facilitate early intervention
- Minimize treatment cost
- Gather data
 - Track incidence/prevalence
- Treatment response
- Cost
- Reduce mortality
- Shorten disease duration
- Improve treatment outcomes


Address the Most Important Conditions of Calves

Producer-Attributed Cause of Death	Percent
Scours, diarrhea, or other digestive	56.5
Respiratory	22.5
Unknown reason	7.8
Calving problem	5.3
Other known reason	4.3
Lameness or injury	1.7
Joint or navel problem	1.6
CNS, incoordination, depression	0.3



Health Evaluation Must Not Penalize

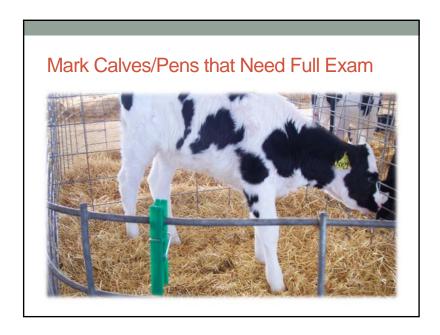
- Calves
- Screeners
- Examiners
- Treatment Crew

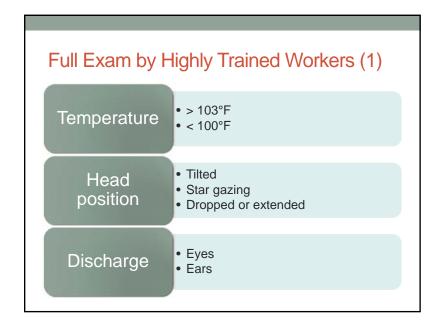
Daily Observation

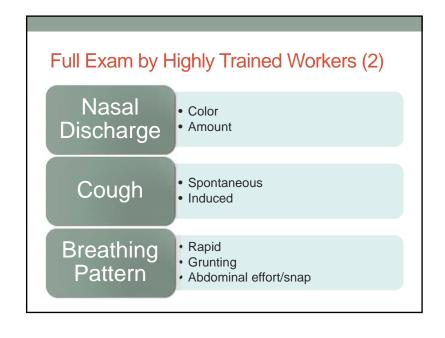
- Accomplished during other chores
 - Picking up bottles
 - Dumping milk/water
 - · Putting out calf starter
- Calves still standing when most are lying
- Calves slow to get up for feed

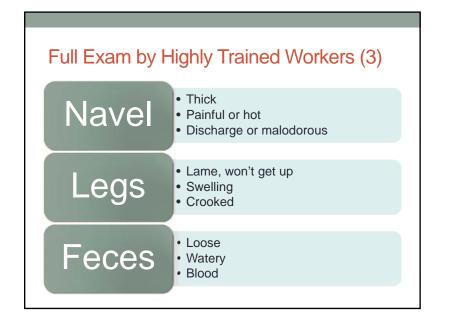
Screeners Find...

- Calves still standing when 90% are lying down or calves still lying when 90% are standing
- Diarrhea
- Bleeding (anywhere)
- Discharge eyes or nose
- Sunken eyes
- Abnormal posture
 - Arched back
 - Tilted head
 - Star-gazing
- Coughing calves
- Breathing effort/noise




Timing of Health Screening


- Incorporate some aspects into normal chores
 - Collecting milk buckets/bottles
 - Delivering water
 - · Picking up refusals



- · Last calves standing after feeding
- · Last calves to rise at feeding time

Post-Mortem Exams are Useful

- Training to open dead calves
 - Collect samples
 - Take pictures for the Veterinarian

Treatments Needed

- Written protocols from a veterinarian who is actively involved by participation, training and monitoring results
- Treatment crew that has good skills, cares about animals, has patience, gets results
- Manager who leads by example

- Communication is essential
- Exam to treatment crew
- Treatment to manager
- Manager to records
- Stall side markers help

Treatment Status

Avoid Calf Vaccination Pitfalls

- Vaccinating sick/stressed calves
- Multiple vaccines at once
- Gram negative bacterial components
 - Pasteurella and Mannheimia
 - Salmonella
- Mycoplasma bovis
- Half-dose vaccinations

Where are your weak points?

- Delayed removal from maternity
- Contaminated colostrum
- · Esophageal feeder
- Warming area bedding
- Calf pen bedding
- Inadequate nutrition
- Limited water
- Contaminated feed
- Feed refusals dumped in calf housing
- Limited time between successive occupants

- Failure to remove bedding or stall base between calves
- Lack of sanitation protocols for feeding equipment
- Delayed disease detection
- Incomplete/ineffective treatment
- Cold stress
- Over vaccinating

