Immunology, Vaccines, and Prevention of Salmonella

Derek Foster, DVM, PhD, DACVIM—Large Animal
Assistant Professor of Ruminant Medicine

Overview

- Basic overview of the immune system
- How are calves different?
- How do vaccines work?
- Salmonella and the immune system
- Salmonella vaccines
Immune System

- Constant exposure throughout life to pathogens
 - Viruses
 - Bacteria
 - Fungi
 - Protozoa
 - GI parasites
- Must differentiate the good versus the bad

http://ozarker.org/the-human-microbiome/

Immune System

- Innate immune response
 - Always “on duty”
 - First response
 - Not specific to a pathogen
 - Does not improve with time and exposure

- Acquired immune response
 - Takes days to weeks to be activated
 - Specifically targeted to a pathogen
 - Repeated exposure improves the strength and speed of response
 - Target of vaccines

Innate Immune System

- Barriers
 - Abomasal pH, skin, mucus

- Soluble factors
 - Antimicrobial proteins in mucus and other fluids

- Cells
 - Some reside in tissues
 - Surveillance and defense
 - Some circulate in blood

“Infantry”

- Rapid response in almost any body system to any pathogen
- Amplifies the response to increase the response
- Recruits specific responses from the acquired response
- Can be damaging to the animal
Acquired Immune System

• Soluble factors
 • Immunoglobulins (antibodies)
 • Secreted into the blood stream and other areas of the body (nose, intestine, udder, etc.)
 • Neutralize pathogens and mark them for killings

• Cells
 • “Helper” cells amplify or direct the response
 • “Cytotoxic” cells directly kill infected cells

• “Special forces”
 • Called in by innate immune system to target specific pathogens
 • Take significant training
 • Vaccines
 • Previous exposure
 • Less damaging to the host

How are calves different?

Calf Immunology

• Innate immune system
 • Some barriers are weaker
 • Abomasal pH is high for 3-4 days
 • Can have reduced numbers of cells
 • Cells do not function as well
 • Especially in first week
 • Effect of age vs effect of stress

• Acquired immune system
 • Lack antibodies at birth
 • No specific helper or cytotoxic cells
 • Can get both from colostrum
 • Fresh versus processed colostrum

Maximizing calf immune function

• 1 gallon of high quality colostrum within 4 hours of birth
• Fresh from calf’s dam>fresh from another cow> frozen>powdered replacer
• Must balance with timing, labor, controlling disease, etc.

Generally the calf’s immune response is slower, weaker and less specific
Maximizing calf immune function

- Minimizing exposure to pathogens
 - Reduces chance that response is overwhelmed
 - Sanitation
 - Ventilation
- Minimize stress
 - Appropriate nutrition
 - Adequate shelter
 - Heat and cold stress
 - Processing

How do vaccines affect the immune system?

- Vaccine can include:
 - Killed pathogen
 - Modified live (weakened) pathogen
 - A specific part of a pathogen

- Only target the acquired immune response
 - Response is slow
 - Weeks to achieve maximum protection
 - Requires multiple exposures
 - Booster typically required for best, most persistent response
 - Very specific
 - Depending on pathogen, may be strain specific

How do vaccines affect the immune system?

- Vaccine is recognized by a surveillance cell
 - Carried to a nearby lymph node
- Recruits cells from the acquired immune response
- Specific antibodies are created against the vaccine strain
 - Circulate throughout the body
- A second exposure amplifies this response and creates long-lasting cells capable of producing these antibodies
 - “Memory” cells are created that reside in lymph nodes and tissues around the body
 - Can rapidly produce specific antibodies in the future
Vaccines in calves

- Colostral antibodies can last for 3-4 months with good colostrum management
 - Most vaccines can be delayed until then
- But what if colostrum isn’t enough...
- Calves can respond to vaccines in the first week of life
- Response to vaccines is less than that of juveniles and adults

Vaccines in calves

- Vaccine recognition → inhibited by colostral antibodies, fewer surveillance cells
- Recruitment and antibody production → Decreased number of cells to respond and produce antibodies
- Booster 4-6 weeks later is too late to protect neonates

Improving Immunity in Neonatal Calves

- Dry cow vaccination
 - Provides specific antibodies for pathogens in neonatal calves
 - Best evidence for diarrheal pathogens
 - Can we do this for Salmonella?
 - Must have a good colostrum management program
 - No colostrum replacers
 - Cannot be used in an outbreak

Improving Immunity in Neonatal Calves

- Stimulate immunity at the site of infection instead of everywhere in the calf
 - Intranasal vaccines
 - Oral scours vaccines
- May bypass interference of colostral antibodies
- May stimulate some innate immune responses
- Can be helpful in preventing disease in neonates
So what about Salmonella?

• Causes a significant innate immune response
 • Much of the pathology can be attributed to this "overeager" response

• Evolved mechanisms to survive the immunologic attack
 • Uses some of these cells to spread throughout the body and create long-term carriers

• Can invade oral tonsils or small intestine
 • Through small cuts in skin in feedlot cattle
 • Maybe through respiratory tract too

So what about Salmonella?

• Can cause disease as early as 5 days of age

• Protection appears to require both halves of the acquired immune response
 • Difficult to induce both antibodies and cellular response with vaccines

• Immune response is serotype specific

Vaccination

• Controversy exists over whether or not vaccinating young calves with Salmonella is beneficial

• Complex problem as immunity to different serotypes is quite different

• Most important aspect of control is to limit exposure

• Vaccines available include killed (bacterins), bacterial fractions (subunit) and modified live

Killed Vaccines

• Calves less than 1 year of age generally do not respond well to killed Salmonella bacterins

• There aren’t any killed vaccines on the market in the US now – so these are all autogenous products

• Several studies indicate the use of autogenous or killed vaccines not effective in calves
Killed Vaccines

• Study vaccinated calves between 1 and 19 weeks of age with a killed vaccine as well as a modified live vaccine
• Calves less than 12 weeks of age that received a killed vaccine did not produce any antibodies
• However calves given ML at 1 & 3 weeks of age did have detectable antibodies
• Conclusion – Killed Salmonella vaccines probably not ideal for use in young calves

Killed Vaccines

• Groups of calves were vaccinated with
 • Oral modified live S. Typhimurium (non pathologic)
 • SC with killed S. Typhimurium strain
 • Unvaccinated control group
• Calves orally challenged with S. Typhimurium at 3 weeks of age
• ML oral vaccine gave reasonable protection (other 2 groups developed acute enteritis, pyrexia, etc)
• Less S. Typhimurium recovered from fecal cultures and from tissues at necropsy from ML group

Infect & Immun 1983; 41:742-750

Killed Vaccines

• Even studies in adult cattle with killed vaccines have been underwhelming
• Conclusion – the use of autogenous bacterins in calves is almost certainly to be of no benefit in preventing Salmonella

Modified Live Vaccines

• More commonly used in calves
• Various methods have been used to make the bacteria weaker in calves
Modified Live Vaccines

- Calves vaccinated with a ML S. Typhimurium vaccine either orally or IM at 2-3 weeks of age
- Calves were challenged at 5-8 weeks of age
- All control calves became sick and 14/16 died – all cultured positive at necropsy for Salmonella
- 6/7 calves given 2 doses of vaccine IM lived as well (4/7 did not develop diarrhea)
- All 3 calves given 2 doses of vaccine orally lived

Modified Live Vaccines

- Calves that received only 1 dose of vaccine (either IM or orally) generally died and were not protected after challenge
- No significant side effects of vaccination were noted
- Another ML strain tested was not effective

Modified Live Vaccines

- A follow-up study was done with a ML S. Dublin vaccine
- Calves were vaccinated at 2 and 3 weeks of age – and challenged at 5 weeks of age
- Significant protection was again noted in the vaccinated calves (reduced mortality, diarrhea and culturing of Salmonella)
- In theory – these vaccines are incapable of reverting to virulence

Modified Live Vaccines

- Entervene-d is a ML S. Dublin vaccine approved for use in calves over 2 weeks of age
- Has some cross-protection against Typhimurium (groups B and D similar)
- Use in younger calves has been reported with mixed results
- Anaphylactic reactions are fairly common (likely due to endotoxin)
Oral Vaccination

- 140 calves received ML vaccine orally at 3 and 10 days of age (148 unvaccinated calves)
- No difference in mortality, % of calves that developed diarrhea, % of calves from whom Salmonella was cultured, daily depression scores or growth rates between groups
- >40% of calves in both groups developed diarrhea
- **Conclusion** – oral vaccination not effective

Habing et al, JAVMA 2011; 238:1184-1190

Modified Live Vaccines

- Challenge is to develop a vaccine that provides cross-protection against multiple serovars
- Recent new modified live strains show promise as oral vaccines that may provide cross protection

Conclusions for Modified Live Vaccines

- Modified live vaccines can work very well and offer significant protection against challenge
- Future vaccines show promise for providing broad immunity
- However the ability to protect calves less than 4-5 weeks of age may be limited
- Studies have shown that calves often get exposed to Salmonella within 48 hours of birth

Subunit Vaccines

- Bacterial fractions or extracts (ie surface proteins, flagella, etc)
- Vaccines consist of a single protein – designed to isolate bacterial fragments that will induce an immune response without causing adverse reactions
- Becoming more common in both human and veterinary medicine
Subunit Vaccines

- Consists of extracts of iron transport proteins – common to all Salmonella
- Required for the bacteria to survive
- Approved for use in cattle >6 months
- Attempted use of SRP (S. newport) bacterin in calves produces high rate of adverse reactions
- Possible benefit to using SRP in dry cows

Passive Immunity

- Very little data on the use of Salmonella vaccines in the dry cow and their potential benefit to controlling disease in calves
- A few studies since the 1960s have shown some benefit to calves with dry cow vaccination
 - ML appears better than killed
 - No data with current vaccines

SRP Study

- 30 Holstein cows were vaccinated at dry off and again 4 weeks later (30 cows received saline)
- Colostrum was collected at calving and calves were fed colostrum from their dam within 4 hours of birth
- Calves were bled 24-48 hours later

<table>
<thead>
<tr>
<th></th>
<th>Before Vaccination (Dry-off)</th>
<th>After Vaccination (at calving)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Group</td>
<td>0.26 ± 0.03</td>
<td>0.16 ± 0.02</td>
</tr>
<tr>
<td>Vaccinated Group</td>
<td>0.20 ± 0.02</td>
<td>0.69 ± 0.03</td>
</tr>
<tr>
<td>P Value</td>
<td>0.56</td>
<td>0.01</td>
</tr>
</tbody>
</table>

SRP Study

<table>
<thead>
<tr>
<th></th>
<th>Colostrum</th>
<th>Calves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Group</td>
<td>0.66 ± 0.03</td>
<td>0.30 ± 0.02</td>
</tr>
<tr>
<td>Vaccinated Group</td>
<td>1.49 ± 0.02</td>
<td>1.04 ± 0.03</td>
</tr>
<tr>
<td>P Value</td>
<td>0.011</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Entervene-d Study

- 30 Holstein cows were vaccinated at 3 weeks prior to dry off and again at dry off
- Colostrum was collected at calving and calves were fed Colostrum from their dam within 4 hours of birth
- Calves were bled 24-48 hours later

Entervene-d Study

<table>
<thead>
<tr>
<th></th>
<th>Before Vaccination</th>
<th>After Vaccination (at calving)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Group</td>
<td>-4.2 ± 1.5</td>
<td>-9.4 ± 1.1</td>
</tr>
<tr>
<td>Vaccinated Group</td>
<td>-6.9 ± 0.9</td>
<td>40.3 ± 9.1</td>
</tr>
<tr>
<td>P Value</td>
<td>0.67</td>
<td>0.008</td>
</tr>
</tbody>
</table>

ELISA results presented as percent positivity

Entervene-d Study

<table>
<thead>
<tr>
<th></th>
<th>Colostrum (prior to Colostrum)</th>
<th>Calves (prior to Colostrum)</th>
<th>Calves (after Colostrum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Group</td>
<td>-17.2 ± 0.4</td>
<td>-12.1 ± 0.4</td>
<td>-3.2 ± 1.2</td>
</tr>
<tr>
<td>Vaccinated Group</td>
<td>14.8 ± 7.6</td>
<td>-13.8 ± 0.5</td>
<td>88.5 ± 8.9</td>
</tr>
<tr>
<td>P Value</td>
<td>0.04</td>
<td>0.87</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Conclusions from dry cow vaccination studies

- Commercially available vaccines can provide antibodies to calves against Salmonella
- More studies needed to determine whether they might be protective
- Antibodies probably of relatively short duration
- Perhaps could be used in combination with ML vaccination at some point

Conclusions

- Both innate and acquired immune responses are critical to calf health
- Calf immune responses are less than adults
 - Colostrum management is critical to calf health
- Vaccines primarily stimulate the acquired immune response
 - Need repeated exposure
 - Slow to develop
 - Very specific

Conclusions

- Immunity to Salmonella is complex
 - Some aspects of the response are harmful
 - Salmonella can hijack some white blood cells
 - Requires both arms of the innate immune response
 - Little cross protection
- Modified live and subunit vaccines provide some protection in older calves and adults
 - Too dangerous for young calves
- Passive immunity through colostrum may provide some protection for the first weeks of life

Derek Foster
Dept of Population Health and Pathobiology
North Carolina State College of Veterinary Medicine
1060 William Moore Dr
Raleigh, NC 27606
derek_foster@ncsu.edu