

Key Considerations Feeding 2021 Corn Silage and Planning for 2022

Joe Lawrence, Cornell PRO-DAIRY

NY/VT Corn Silage Hybrid Evaluation

Collaboration of:

Cornell University CALS

- PRO-DAIRY, Department of Animal Science
- Department of Plant Breeding & Genetics

University of Vermont Extension

(formal agreement with UVM)

A Special Thank You

Tom Overton Margaret Smith Heather Darby Mike Van Amburgh Mike Davis Jerry Cherney Allison Kerwin Sherrie Norman Keith Payne Dan Fisher Paul Stackowski Sara Ziegler

With support from:

- Dairy Producers
- Seed Corn Industry
- Cornell Cooperative Extension
- Cornell University Agricultural Experiment Station
- Miner Institute

y ve Extension v Agricultural n

NY & VT Corn Silage Evaluation Program

Locations

- 80-95 Day Relative Maturity
 - Oakfield, NY
 - Willsboro, NY
 - Alburgh, VT
- 96-110 Day Relative Maturity
 - Aurora, NY
 - Madrid, NY
 - Alburgh, VT

Thank you to host Greenwood Dairy Lamb Farms

NY & VT Corn Silage Evaluation Program

2021 NY VT Corn Silage Hybrid Evaluation Report Link: <u>https://blogs.cornell.edu/varietytrials/corn-silage/</u>

2021 Program

Seed Consultants

Growing Environment vs Genetics Impact on Crop Performance

Sample Distribution 2017 - 2021

2021 Corn silage overview

https://ecommons.cornell.edu/bitstream/handle/1813/110265/2021%20Corn%20Silage%20Harvest.pdf?sequence=2&isAllowed=y

Regional Differences

- 2021 Crop Year
 - East
 - variable but generally higher rainfall
 - Mid to late season
 - Midwest
 - Much drier
 - Similarities to Northeast in 2020

Using Public data as comparison

- Average digestibility numbers will vary by hybrid and growing environment
- Public trials provide the range in expected values for a given growing season

Relative Maturity	Growing	Location	Yield, 35% DM	Dry Matter	Starch	Crude Protein	aNDFom	30 hr NDFD	120 hr NDFD	240 hr uNDFom
Group	3 eas011		tons/acre	%	% DM	% DM	% DM	% NDFom	%NDFom	% DM
		Oakfield, NY	29.1	37.7	40.3	7.9	33.0	57.7	65.1	10.6
	2021	Willsboro, NY	23.6	32.1	39.0	8.0	34.6	56.3	67.4	10.3
		Alburgh, VT	19.9	36.3	37.9	8.4	36.1	52.8	64.1	12.0
		Albion, NY	19.3	36.6	41.7	8.0	32.5	60.2	68.9	9.2
	2020	Willsboro, NY	16.5	30.6	34.7	7.4	37.7	60.4	71.9	9.5
		Alburgh, VT	19.8	32.4	37.8	8.3	35.9	56.0	65.6	11.4
20_05 day		Albion, NY	26.0	31.9	35.1	7.4	36.5	59.1	66.3	11.3
50-55 uay	2019	Willsboro, NY	19.2	32.6	36.9	6.9	35.8	60.5	67.6	10.6
NIVI		Alburgh, VT	23.4	33.7	36.5	7.3	37.8	61.6	67.6	11.2
		Albion, NY	19.2	36.2	39.2	8.3	34.2	56.1	69.4	10.0
	2018	Willsboro, NY	18.5	35.0	34.9	8.2	35.7	62.0	70.0	9.7
		Alburgh, VT	18.3	33.3	31.0	7.8	39.0	56.2	67.4	11.8
		Albion, NY	25.2	30.8	32.3	8.3	37.2	59.1	69.8	10.1
	2017	Willsboro, NY	19.2	31.3	38.1	7.7	39.5	56.3	66.8	12.1
		Alburgh, VT	27.5	31.8	34.4	7.5	38.9	53.2	62.7	13.4
		Aurora, NY	29.3	35.2	37.8	6.3	38.5	54.1	62.7	13.3
	2021	Madrid, NY	32.5	32.3	36.9	7.4	37.2	55.4	62.6	12.9
		Alburgh, VT	23.9	39.8	37.2	7.5	38.6	56.9	66.9	11.7
		Aurora, NY	17.1	36.0	38.2	7.5	36.0	61.1	68.3	10.4
	2020	Madrid, NY	23.6	34.1	40.1	8.2	32.9	60.3	67.6	9.8
		Alburgh, VT	25.1	36.4	37.9	7.6	36.5	55.4	65.6	11.6
06 110		Aurora, NY	27.1	34.7	38.3	6.5	36.9	55.5	62.2	12.9
90-110	2019	Madrid, NY	27.4	28.6	30.7	7.5	38.0	58.4	65.5	12.1
day RM		Alburgh, VT	24.3	35.4	39.3	7.6	35.5	61.6	71.1	9.2
		Aurora, NY	21.7	38.2	38.8	7.3	35.3	59.9	67.7	10.4
	2018	Madrid, NY	28.6	32.9	35.4	7.7	35.9	61.2	69.9	9.8
		Alburgh, VT	23.3	34.9	34.2	7.2	38.3	55.2	66.0	12.0
		Aurora, NY	26.0	31.9	31.2	6.1	42.6	54.5	63.8	14.4
	2017	Madrid, NY	31.9	35.2	34.8	7.4	41.3	50.6	59.4	15.9
		Alburgh, VT	28.5	32.7	35.3	7.2	39.8	52.7	61.4	14.3

2022: High Crop Input Cost

- Do the same BETTER
 - Know what you are working with
 - Soil Test
 - Manure Nutrient Analysis
 - Target Nutrient Use
 - 4R's
 - Material, Rate, Time, Placement
 - Don't skimp of low fertility fields
 - Cover fixed cost
 - Don't over-fertilize high fertility fields
 - N Use Efficiency
 - Forage quality

2022: Forage waste will cost you more

CELLS TO EDIT			Diet Inclusion Rate per Day			Yield and Base	Yield and Base Acreage Storage Shrink Adjustment			Inventory (Carryover) Management Adjustment			
	Number of	Pounds	0/ DN4	Pounds	Total Tana	Seasonal Yield	Tatal Aaroo	0/ Chrink	Adjusted	Feeding Season	Target Carryover	Total	Acres Adjusted
	Animals	(Dry Matter)	%, DIVI	(As Fed)	Total Tons	Tons/Acre (AF)	Total Acres	% Shrink	Acreage	(days)	(days)	Days	Shrink + Carryover
HEIFERS (age 2-12)	0												
Corn Silage		0	35%	0.0	0	1	0	15%	0	365	120	485	0
Haylage		0	40%	0.0	0	1	0	20%	0	365	45	410	0
Dry Hay		0	90%	0.0	0	1	0	10%	0	365	45	410	0
Other		0	30%	0.0	0	1	0	10%	0	365	45	410	0
HEIFERS (age 13-22)	0				• -								
Corn Silage		Tota	l Acres - A	All Anir	nal Gro	oups					120	485	0
Haylage							•	ام م الم م	A		45	410	0
Dry Hay					No	Adjustma	A A	ajustea	Adju	sted Shrin	K 45	410	0
Other						Aujustmei		r Shrink		arryovor	45	410	0
							10		τU	arryover			
LACTATING 1	100		C	orn Sila	ge	72		83		111			
Corn Silage					85	12		00			120	485	111
Haylage				Hayla	ge	0		0		0	45	410	0
Dry Hay											45	410	0
Other				Dry H	ay	0		0		0	45	410	0
LACTATING 2	0			Oth	ner	0		0		0			
Corn Silage		L	35%	0.0	0	1	0	15%	U	365	120	485	0
Haylage		0	40%	0.0	0	1	0	20%	0	365	45	410	0
Dry Hay		0	90%	0.0	0	1	0	10%	0	365	45	410	0
Other		0	30%	0.0	0	1	0	10%	0	365	45	410	0
DRY COWS	0												
Corn Silage		0	35%	0.0	0	1	0	15%	0	365	120	485	0
Haylage		0	40%	0.0	0	1	0	20%	0	365	45	410	0
Dry Hay		0	90%	0.0	0	1	0	10%	0	365	45	410	0
Other		0	30%	0.0	0	1	0	10%	0	365	45	410	0

Forage acreages needed for dairy herd calculator https://cals.cornell.edu/pro-dairy/our-expertise/forage-systems

2022: Forage waste will cost you more

- Corn Silage
- 100 lactating cows
- Yield: 18 ton/acre, 35% DM
- 25 lbs DM / cow / day

	Fotal Acres - All Animal Groups				
Shrink: 10%		No Adjustment	Adjusted		
$\frac{9}{2}$ acros / 100 cours		NO AUJUSTITIETT	for Shrink		
o acres / 100 cows	Corn Silage	72	80		
	Haylage	0	0		
	Dry Hay	0	0		
	Other	0	0		

	Total Acres - All Animal Groups				
Shrink: 25% cres / 100 cows		No Adjustment	Adjusted for Shrink		
	Corn Silage	72	91		
	Haylage	0	0		
	Dry Hay	0	0		
	Other	0	0		

19 a

Forage acreages needed for dairy herd calculator https://cals.cornell.edu/pro-dairy/our-expertise/forage-systems

Corn N Use Efficiency

Mine data from CS Program (2017-2020) N Use Efficiency Hybrid Influence?

More N....More Yield ???

Berlingeri JM, Lawrence JR, Sunoj S, Czymmek KJ and Ketterings QM (2021) Nitrogen and Phosphorus Balances Vary at the Whole-Farm, Field, and Within-Field Scales. Front. Sustain. 2:747883. doi: 10.3389/frsus.2021.747883

N Balances & Use Efficiency 2021 CS Program

Relative	Crowing		Yield,	Dry								
Maturity	Growing	Location	35% DM	Matter								
Group	Season		tons/acre	%								
00.05.1		Oakfield, NY	29.1	37.7	Table 3. NY & VT Corn Si	ilage Trials, Fi	eld Information	, 2021 Growing	Season			
80-95 day	2021	Willsboro, NY	23.6	32.1		80 - 95 Day Relative Maturity 96 - 110 Day Relative Mat					Maturity	
RM		Alburgh, VT	19,9	36.3		Alburgh, VT	Oakfield, NY	Willsboro, NY	Alburgh, VT	Aurora, NY	Madrid, NY	
		,			Planting Date	7-May	13-May	19-May	11-May	20-May	12-May	
06 110		Aurora, NY	29.3	35.2	Harvest Date	10-Sep	3-Sep	8-Sep	16-Sep	17-Sep	14-Sep	
96-110	2021	Madrid, NY	32.5	32.3	Previous Crop	Corn	Corn	Sod	Corn	Soybeans	Corn	
day Rivi		Alburgh, VT	23.9	39.8	Starter N	5	32	15	5	25	32	
*Alburgh _	sosson la	ng drought stro	۱ د د		Manure N	0	113	0	0	0	115	
Alburgh –	568501110	ing urought stre	22		Sidedress N	96	95	90	96	101	0	
					Total Fertilizer N	101	240	105	101	126	147	
					Available N Balance ¹	-20	56	62	-24	23	-41	
					Soil Type	Amenia	Ontario	Kingsbury	Covington	Honeoye	Grenville	
					¹ Available N Balance = N U	Jptake by Crop	- Available N Sup	oly				
					A positive balance indic	ates there was	excess N not utliz	ed by the crop.				
					When N does not limit yi	ield, a negative	balance indicate	s more efficient N	use or soil N su	pply compared to	book values.	

2022: High Crop Input Cost Fertility and Forage Quality

Benefits

- Optimize production per acre
- Healthy Plants
- Proper maturation (dry down)
- Nitrogen (N) on Grass Yield & Protein
 - Pays even at high N prices
 - Manure partial substitute

Concerns

- Excess Potassium (K) Dry Cows
- Excess N Delayed Maturity (Dry Down)
- "K fertilization increased alfalfa yield, but decreased forage quality," - Jacob Jungers, U. of Minnesota
- "While increasing yield, added K and N tend to reduce corn silage quality in all primary metrics including starch content, pre-ensiled starch digestibility, and fiber digestibility."

- Corteva Pioneer Study Newsletter: Potassium & Nitrogen in Corn Silage Production www.pioneer.com/silagezone

2022: High Crop Input Cost **Optimizing Forages**

- Start Planning Now
 - Harvest & Storage Planning
 - Understand the forages you will be working with
- All the usual suspects
 - Harvest Timing
 - Proper Ensiling
 - Well Managed Storage
 - Well Managed Feedout

Penn State Study on Farm Profitability

- tracked several dairy farms to determine what factor(s) were associated with profitability.
- #1 ability to manage forage quality and inventory.
 - harvest at optimal maturity regardless of weather
 - Back-up plans
 - Overall, feed costs as % of total income
 - ~9% lower.

Dynamic Harvest Scheduling

- Target high quality feed **from every acre**
- Do not pre-determine what fields will be harvested at a lower quality
- Let unforeseen challenges (weather, equipment breakdowns) determine what feed will fit the needs of non-lactating animals

Dynamic Harvest Schedules

By Joe Lawrence

In a whole farm context the focus on high-quality forage has shifted to the right-quality forage for each group of animals on the farm. This, however, is not an excuse to relax goals on producing high-quality forage. We all know that a number of factors, from weather to equipment breakdowns, can ruin the best of plans. While it is not possible to manage the weather, steps can be taken to help manage for the weather.

To fully capitalize on matching the right-quality forage to the right group

> **Dynamic Harvest Management** The Manager, March 2018 https://cals.cornell.edu/pro-dairy/publications/manager/manager-march-2018

grass silage as high-producing dairy cow forage," reported Cherney and Cherney in a "Feeding Grass to Dairy Cows" article published by Forages. Additionally, nitrogen management is instrumental in bolstering grass performance, according to "Fertilization

of Perennial Grasses" by Cherney et al.

Harvest timing for first harvest in the spring is critical to the quality of that cutting and to set the stage for subsequent harvest. Information on timing harvest is discussed in the

in Forages.

FIGURE 1

Harvest Window by Target Animal Class

Rigid Harvest Schedule

Dynam	ic	Har	/est	Scł
-------	----	-----	------	-----

				Plai	nned	Ac	tual	Pla	nned	Ac	tual
Acres	Proposed Harvest Order	Species	Conditions when High Quality	Harvest for Lactating Animals	Delayed Harvest for Non-Lactating Animals	Harvest for Lactating Animals	Delayed Harvest for Non- Lactating Animals	Harvest for Lactating Animals	Delayed Harvest for Non-Lactating Animals	Harvest for Lactating Animals	Delayed Harvest for Non- Lactating Animals
12	1	100% Orchardgrass	Favorable for Harvest		*		*	*		*	
20	2	100% Tall Fescue	Rain Delay		*		*	*			*
16	3	70% Grass, 30% Alfalfa	Favorable for Harvest		*		*	*		*	
8	4	70% Grass, 30% Alfalfa	Favorable for Harvest		*		*	*		*	
9	5	50% Grass, 50% Alfalfa	Favorable for Harvest	*		*		*		*	
8	6	40% Grass, 60% Alfalfa	Rain Delay	*		х		*			*
25	7	30% Grass, 70% Alfalfa	Favorable for Harvest	*		*		*		*	
16	8	20% Grass, 80% Alfalfa	Rain Delay	*		x		*			*
21	9	100% Alfalfa	Favorable for Harvest	*		*		*		*	
12	10	100% Alfalfa	Equipment Breakdown	*		x		*			*

hedule

Growing Environment Impact on Crop Performance

Weather prior to silking affects:

- corn plant height (and yield) and
- fiber quality

Weather after silking appears to exert more effect on:

- corn grain yield,
- neutral detergent solubles:NDF ratio,
- and total dry matter digestibility

- Mertens (2002) summarized by Mahanna (2005)

Dynamic Harvest Scheduling Corn Silage

- Tracking Weather for potential forage quality impacts
- Mapping out harvest sequence based on crop maturity
 - Whole Plant DM is still King
 - Need to pay attention to Ear AND Stover
- Pre-harvest sampling
 - DM
 - Quality
- Cutting height

Weather, GDDs and Dry Down

- Not every GDD is created equal
- The season makes a difference
- Madrid 2020
 - Relief (modest) of drought after pollination
 - Crop tried to "make up" for stagnation earlier in the season

2021 - Growing Degree Days

- Growing Degree Days offer estimate of maturity for harvest
- Environmental Factors impact the plants ability to utilize available GDD's
- Not suitable for final harvest decisions

Corn silage harvest timing: Not all growing degree days are created equal <u>https://cals.cornell.edu/pro-dairy/our-expertise/forage-systems</u>

Ear and Stover DM **Contribution to Whole Plant DM**

2018

- Season: warm
- Good conditions for dry down

2019

- Season: cool, late
- Dry down challenged

Kernel Processing Information Series

Corn Harvester Performance Study 2018/2019

latter, 2018	γ = 1.0759x + 11.571 R ² = 0.8275
latter, 2019	y = 0.7841x + 18.054 R ² = 0.6168
y Matter, 2018	y = 0.5549x + 6.2659 R ² = 0.7792
y Matter, 2019	y = 0.923x - 4.1324 R ² = 0.737
ant Dry Matter	

https://cals.cornell.edu/pro-dairy/our-expertise/forage-systems

August 2019

Field Crops 28.5 - 132

The "Normal" Pattern of Corn Forage and Grain Development Joe Lauer, Corn Agronomist

The relationship between kernel growth stage and development of corn for normal planting dates.

	Percent o	f max yield	Moisture content (%)		
Stage	Grain	Silage	Grain	Silage	
R1: Silking	0	45-50		80-85	
R2: Blister	0-10	55-60	85-95	80-85	
R3: Milk	10-30	60-65	70-85	80-85	
R4: Dough	30-60	65-75	60-70	75-80	
R5: Dent	60-75	75-85	50-55	70-75	
R5.5: 50% Kernel milk	90-95	100	35-40	65-70	
R6: Black layer	100	95-100	30-35	55-65	

Adapted From: Agronomy Advice University of Wisconsin, August 2013 http://corn.agronomy.wisc.edu/AA/pdfs/A102.pdf

Whole Plant DM: Yield & Quality

One week delay in harvest 2018 NY VT Corn Silage Hybrid Evaluation Program

Same 4 hybrids				
(3 reps/hybrid/date)	Sept. 12	Sept. 19	P-value	
— Whole Plant Dry Matter (%)	32.4	37.2	< 0.0001	
—uNDF240 (%DM)	13.0	13.4	0.3947	
NDFD30_NDF	54.3	52.9	0.0783	
——Starch Content (%)	30.8	35.0	0.04	
— Yield (tons/acre, 35% DM)	20.4	23.1	0.0517	

Whole Plant DM Sampling

- Uniform field
 - 7+ plants = +/-1 % whole plant DM
 - Sample must be representative
- Non-uniform fields
 - Consider more samples and separate samples from different areas

Sampling for Moisture Content in Corn Silage Fields Jerry Cherney https://cals.cornell.edu/pro-dairy/our-expertise/forage-systems

Mapping fields and Storage

- Pre-harvest forage samples
 - Good indication for key forage quality parameters
 - Order of fields for harvest
 - Adjustments to cutting height
 - Storage location planning

Fa	Fa	vorir	
•	Weather Conditions known to	•	Low
	reduce Fiber Digestibility	•	Low
•	Abundant inventories	•	BM
•	Expectation of high yields	•	High
•	Heavier Soil Types	•	Fiel
•	Lower Quality Hay Crop Silage		

g Lower Cutting Height

inventory Yield R Hybrids quality Hay Crop Silage ds intended for rotation

Green Samples at Harvest (or before harvest)

A very reasonable investment for understanding what you will have to feed in the coming year.

Changes to Corn	Changes to Corn Silage During Fermentation						
Dry Matter	И	Dependent on level of DM loss (shrink) during fermentation					
Starch Digestibility	\uparrow	Ferment minimum 3-4 months ¹					
Starch Content	-	Could have slight changes in composition					
Processing Score	-	Changes observed have not been consistent (Ferraretto ² , Lawrence & Kerwin ³)					
Fiber Digestibility	-	No change ¹					
Mycotoxins	א≮	Majority originate in the field, very few are storage related. Not alive – will not "grow". Any predominately associated with increased concentration (DM loss) *Need to be present.					
Yeast and Molds	א≮	Increased risk with poor fermentation, low density, poor face management. *Need to be pro					

¹Influence of Ensiling on the Digestibility of Whole-Plant Corn Silage, Wisconsin Focus on Forage https://fyi.extension.wisc.edu/forage/influence-of-ensiling-on-the-digestibility-of-whole-plant-corn-silage/ ²Does fermentation change corn silage processing? https://www.vitaplus.com/blog/articles/does-fermentation-change-corn-silage-processing#.Ya9oVdDMJaQ ³Kernel Processing Information Series, Lawrence & Kerwin https://cals.cornell.edu/pro-dairy/our-expertise/forage-systems

increases in storage

esent.

Starch Digestibility & Ensiling Time

Table 1. Effect of ensiling on ruminal in vitro starch digestibility in whole-plant corn silage.

					Days I	Ensiled					
Experiment	0d	30d	45d	60d	90d	120d	150d	180d	240d	270d	P <
					% of	Starch					
Der Bedrosian et al., 2012 ¹	69		75		77			79		82	0.01
Ferraretto et al., 2014a ²	62	72				79			84		0.001
Windle et al., 2014 ¹	54		59		63		68				0.01
Young et al. 2012 ¹			76				79				0.01

²Ruminal in vitro starch digestibility at 7 h on samples ground through a 4-mm Wiley Mill screen.

Influence of Ensiling on the Digestibility of Whole-Plant Corn Silage, Wisconsin Focus on Forage https://fvi.extension.wisc.edu/forage/influence-of-ensiling-on-the-digestibility-of-whole-plant-corn-silage/

Fiber Digestibility & Ensiling Time

Experiment	0d	304									_
		300	45d	60d	90d	120d	150d	180d	240d	270d	Ρ <
					%	6 of NDF					
Cherney et al., 2007 ¹	56	50									0.00
)er Bedrosian et al., 2012²	62		60		60			59		59	0.0
Ferraretto et al., 2014 ³	57	56				55			56		NS
Hunt et al., 1993⁴	73			71							NS
Young et al. 2012 ²			61				60				0.0

Influence of Ensiling on the Digestibility of Whole-Plant Corn Silage, Wisconsin Focus on Forage

https://fyi.extension.wisc.edu/forage/influence-of-ensiling-on-the-digestibility-of-whole-plant-corn-silage/

Does Processing Score Increase during Fermentation?

Time in the silo effect on corn silage processing score ¹						
Storage length, days	0	30	120	240	P-value	
Ferraretto et al., 2015 – trial 1	50.2	61.1	-	-	0.01	
Ferraretto et al., 2015 – trial 2	60.3	63.6	67.2	68.4	0.08	
Agarussi et al., 2020	28.8	-	28.8	-	0.97	
Saylor et al., 2020	62.4	59.7	64.8	67.7	0.01	
¹ Corn silage processing score - % of starch passing through the 4.75 mm sieve.						
Table Courtesy: Luiz Ferraret						

Kernel Processing Information Series

Strategic Storage Planning

- Focus on Forage Storage areas
- Have a plan
 - Plan A
 - Plan B
 - Plan C
- What happens with a surplus of quality feed?
- What happens with a cutting of garbage?
- Don't bury one feed behind another.
- Determine total tons of feed needed for each animal group
- Store feeds in separate (and accessible) locations to utilize each forage for the right group of animals.

Strategic Forage Storage Planning

By Joe Lawrence and Ron Kuck

The dairy and livestock industries have seen continued advances in options available to improve forage management, from crop species and variety selection, to harvest management, to recognizing the class of animals on the farm that will most benefit from different forage types and qualities.

A shift away from upright silos over the last several decades has largely been driven by the need to store increased quantities of feed and to increase the speed of filling and feeding out. The tradeoff in this is storage systems that ore efficiency and flevibilit

rigid in location and capacity. These commonalities often challenge a farm's ability to adapt their storage options to match the advances made in forage production and feeding programs. Fortunately, the wide-ranging approaches to operating a farm has fostered the development of many different options for forage storage. While there are inherent characteristics of certain storage systems that make sense for certain farms, the ability to consider all of the options can help overcome some of the limitations associated with each ovetern. Recordless of form size

Strategic Forage Storage Planning The Manager, March 2018 https://cals.cornell.edu/pro-dairy/publications/manager/manager-march-2018

Bunk 2	Bunk 3
--------	--------

and management system. Frequently debated examples include the use of highly digestible crops, such as BMR corn and low-lignin alfalfas. Other important options include the use of grasses (alone or with alfalfa), double-cropping with winter grains for forage, and summer annuals.

is this crop a good fit on my soils?

How many tons of this will I need, keeping in mind shrink and carryover needs?

Do I have enough acres to support these needs and at what cost?

Summary

• 2021 Corn Silage Quality (Northeast)*

\mathbf{C}	
	2021 vs. 2020
Fiber Digestibility	\checkmark
Starch Content	\leftrightarrow
Starch Digestibility	Ы
Starch Availability (CSPS)	Ъ

- 2022 is shaping up to be a crazy year for crop inputs
 - Control what you can
 - Make plans to optimize forage utilization in the diet

Thank You! PRODARY **Education & Applied Research**

Joe Lawrence, MS, CCA Dairy Forage Systems Specialist

jrl65@cornell.edu 315-778-4814 http://prodairy.cals.cornell.edu/

